zbMATH — the first resource for mathematics

Cryptanalysis of a chaotic stream cipher and its improved scheme. (English) Zbl 1393.94917

94A60 Cryptography
39A10 Additive difference equations
39A33 Chaotic behavior of solutions of difference equations
Grain; SOSEMANUK; Trivium
Full Text: DOI
[1] Anderson, R. M. [1994] “A5,” http://jya.com/crack-a5.htm.
[2] Cannière, C. D., Trivium: A stream cipher construction inspired by block cipher design principles, Int. Conf. Information Security, 171-186, (2006) · Zbl 1156.94345
[3] Chen, Z., Yuan, X., Yuan, Y., Iu, H. C. & Fernando, T. [2016] “Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer,” IEEE Trans. Circuits Syst.-I: Reg. Papers63, 1464-1475.
[4] Coppersmith, D.; Halevi, S.; Jutla, C., Cryptanalysis of stream ciphers with linear masking, Int. Cryptology Conf., 515-532, (2002) · Zbl 1026.94525
[5] Courtois, N. T.; Boneh, D., Fast algebraic attacks on stream ciphers with linear feedback, Advances in Cryptology — CRYPTO 2003, 176-194, (2003), Springer, Berlin, Heidelberg · Zbl 1122.94365
[6] Courtois, N. T.; Meier, W., Algebraic attacks on stream ciphers with linear feedback, Int. Conf. Theory and Applications of Cryptographic Techniques, 345-359, (2003) · Zbl 1038.94525
[7] Dawson, E.; Clark, A., Divide and conquer attacks on certain classes of stream ciphers, Cryptologia, 18, 25-40, (1994) · Zbl 0833.94014
[8] Feng, X.; Liu, J.; Zhou, Z.; Wu, C.; Feng, D., A byte-based guess and determine attack on sosemanuk, Advances in Cryptology — ASIACRYPT 2010, 6477, 146-157, (2010), Springer, Berlin, Heidelberg · Zbl 1253.94046
[9] Feng, X.; Zhang, F., Cryptanalysis on the authenticated cipher sablier, Int. Conf. Network and System Security, 198-208, (2014)
[10] Frans, V. D. B. [2002] “An analysis of particle swarm optimizers,” PhD thesis, University of Pretoria, South Africa.
[11] Hell, M.; Johansson, T.; Meier, W., Grain: A stream cipher for constrained environments, Int. J. Wireless and Mobile Comput., 2, 86-93, (2007)
[12] Hu, G.; Feng, Z.; Meng, R., Chosen ciphertext attack on chaos communication based on chaotic synchronization, IEEE Trans. Circuits Syst.-I: Fund. Th. Appl., 50, 275-279, (2003) · Zbl 1368.94100
[13] Huang, Y.; Guo, F.; Li, Y.; Liu, Y., Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm, PLoS One, 10, e0114910, (2015)
[14] Jin, C. H.; Yang, Y., A divide-and-conquer attack on self-synchronous chaotic ciphers, Acta Electronica Sinica, 34, 1337-1341, (2006)
[15] Li, C.; Liu, Y.; Zhang, L. Y.; Chen, M. Z. Q., Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation, Int. J. Bifurcation and Chaos, 23, 1350075-1-12, (2013) · Zbl 1270.94056
[16] Lin, Z.; Yu, S.; Lü, J.; Cai, S.; Chen, G., Design and arm-embedded implementation of a chaotic map-based real-time secure video communication system, IEEE Trans. Circuits Syst. Vid. Technol., 25, 1203-1216, (2015)
[17] Liu, Y.; Zhang, L. Y.; Wang, J.; Zhang, Y.; Wong, K. W., Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure, Nonlin. Dyn., 84, 1-10, (2016)
[18] Meier, W.; Staffelbach, O., Fast correlation attacks on stream ciphers, Advances in Cryptology — EUROCRYPT88, 301-314, (1988), Springer-Verlag, NY
[19] Meier, W.; Staffelbach, O., Fast correlation attacks on certain stream ciphers, J. Cryptol., 1, 159-176, (1989) · Zbl 0673.94010
[20] Norouzi, B.; Mirzakuchaki, S.; Seyedzadeh, S. M.; Mosavi, M. R., A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process, Multimed. Tools Appl., 71, 1469-1497, (2014)
[21] Rao, K. D. D.; Gangadhar, C., Modified chaotic key-based algorithm for image encryption and its VLSI realization, Int. Conf. Digital Signal Processing, 439-442, (2007)
[22] Rivest, R. [1992] “The RC4 encryption algorithm,” RSA Data Security Inc Document No. 20, 86-96. · Zbl 0939.94553
[23] Rueppel, R. A., Analysis and Design of Stream Ciphers, 177-190, (1986), Springer
[24] Siegenthaler, T., Decrypting a class of stream ciphers using ciphertext only, IEEE Trans. Comput., C-34, 81-85, (2006)
[25] Wang, X.; Guo, K., A new image alternate encryption algorithm based on chaotic map, Nonlin. Dyn., 76, 1943-1950, (2014) · Zbl 1352.94071
[26] Wu, C. W.; Chua, L. O., A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bifurcation and Chaos, 3, 1619-1627, (1993) · Zbl 0884.94004
[27] Xu, Y.; Zhou, W.; Fang, J.; Sun, W., Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems, Phys. Lett. A, 374, 3441-3446, (2010) · Zbl 1238.34104
[28] Yap, W. S.; Phan, C. W.; Yau, W. C.; Heng, S. H., Cryptanalysis of a new image alternate encryption algorithm based on chaotic map, Nonlin. Dyn., 80, 1483-1491, (2015) · Zbl 1351.94073
[29] Zhang, Y.; Xiao, D.; Wen, W.; Li, M., Breaking an image encryption algorithm based on hyper-chaotic system with only one round diffusion process, Nonlin. Dyn., 76, 1645-1650, (2014)
[30] Zhang, Y.; Xiao, D.; Wen, W.; Nan, H., Cryptanalysis of image scrambling based on chaotic sequences and vigenère cipher, Nonlin. Dyn., 78, 235-240, (2014)
[31] Zhang, L. Y.; Liu, Y.; Pareschi, F.; Zhang, Y.; Wong, K. W.; Rovatti, R.; Setti, G., On the security of a class of diffusion mechanisms for image encryption, IEEE Trans. Cybern., 48, 1163-1175, (2017)
[32] Zhang, L. Y.; Zhang, Y.; Liu, Y.; Yang, A.; Chen, G., Security analysis of some diffusion mechanisms used in chaotic ciphers, Int. J. Bifurcation and Chaos, 27, 1750155-1-13, (2017) · Zbl 1375.94165
[33] Zhu, H.; Zhao, C.; Zhang, X.; Yang, L., An image encryption scheme using generalized Arnold map and affine cipher, Optik — Int. J. Light Electron Opt., 125, 6672-6677, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.