×

One-baryon spectrum and analytical properties of one-baryon dispersion curves in \(3+1\) dimensional strongly coupled lattice QCD with three flavors. (English) Zbl 1336.81123

Summary: Considering a \(3 + 1\) dimensional lattice quantum chromodynamics (QCD) model defined with the improved Wilson action, three flavors, and \(4 \times 4\) Dirac spin matrices, in the strong coupling regime, we reanalyze the question of the existence of the eightfold way baryons and complete our previous work where the existence of isospin octet baryons was rigorously solved. Here, we show the existence of isospin decuplet baryons which are associated with isolated dispersion curves in the subspace of the underlying quantum mechanical Hilbert space with vectors constructed with an odd number of fermion and antifermion basic quark and antiquark fields. Moreover, smoothness properties for these curves are obtained. The present work deals with a case for which the traditional method to solve the implicit equation for the dispersion curves, based on the use of the analytic implicit function theorem, cannot be applied. We do not have only one but two solutions for each one-baryon decuplet sector with fixed spin third component. Instead, we apply the Weierstrass preparation theorem, which also provides a general method for the general degenerate case. This work is completed by analyzing a spectral representation for the two-baryon correlations and providing the leading behaviors of the field strength normalization and the mass of the spectral contributions with more than one-particle. These are needed results for a rigorous analysis of the two-baryon and meson-baryon particle spectra. {
©2016 American Institute of Physics}

MSC:

81V35 Nuclear physics
81V05 Strong interaction, including quantum chromodynamics
81T25 Quantum field theory on lattices
14H81 Relationships between algebraic curves and physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Glimm, J.; Jaffe, A., Quantum Physics: A Functional Integral Point of View (1986)
[2] Seiler, E., Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, 159 (1982)
[3] Faria da Veiga, P. A.; O’Carroll, M.; Schor, R., Commun. Math. Phys., 245, 383-405 (2004) · Zbl 1059.81176 · doi:10.1007/s00220-003-1022-2
[4] 4.P. A.Faria da Veiga and M.O’Carroll, J. Math. Phys.49, 042303 (2008)10.1063/1.2804858;P. A.Faria da Veiga and M.O’Carroll, Int. J. Mod. Phys. A24, 3053-3072 (2009).10.1142/S0217751X09043183 · Zbl 1168.81420
[5] Francisco Neto, A.; Faria da Veiga, P. A.; O’Carroll, M., J. Math. Phys., 49, 072301 (2008) · Zbl 1152.81570 · doi:10.1063/1.2903751
[6] Nussinov, S.; Lampert, M., Phys. Rep., 362, 193-301 (2002) · Zbl 0988.81127 · doi:10.1016/S0370-1573(01)00091-6
[7] Lieb, E., Phys. Rev. Lett., 54, 1987 (1985) · doi:10.1103/PhysRevLett.54.1987
[8] 8.R. S.Schor, Nucl. Phys. B222, 71-82 (1983)10.1016/0550-3213(83)90609-0;R. S.Schor, Nucl. Phys. B231, 321-334 (1984).10.1016/0550-3213(84)90289-x
[9] Durr, S., Science, 322, 1224-1227 (2008) · doi:10.1126/science.1163233
[10] Fiebig, H. R.; Markum, H.; Green, A. M., International Review of Nuclear Physics, 9 (2003)
[11] Simon, B., Statistical Mechanics of Lattice Models (1994)
[12] Faria da Veiga, P. A.; O’Carroll, M., Phys. Rev. D, 71, 017503 (2005) · doi:10.1103/physrevd.71.017503
[13] O’Carroll, M.; Faria da Veiga, P. A.; Francisco Neto, A., Commun. Math. Phys., 321, 249-282 (2013) · Zbl 1270.81242 · doi:10.1007/s00220-013-1688-z
[14] Spencer, T., Commun. Math. Phys., 44, 143-164 (1975) · doi:10.1007/BF01608827
[15] Faria da Veiga, P. A.; O’Carroll, M.; Pereira, E.; Schor, R., Commun. Math. Phys., 220, 377-402 (2001) · Zbl 0989.60099 · doi:10.1007/s002200100449
[16] Hille, E., Analytic Function Theory, 1 (1959) · Zbl 0088.05204
[17] Reed, M.; Simon, B., Modern Methods of Mathematical Physics, 2 (1975) · Zbl 0308.47002
[18] Stein, E. M., Harmonic Analysis (1993)
[19] Gell-Mann, M.; Ne’eman, Y., The Eightfold Way (1964)
[20] Faria da Veiga, P. A.; O’Carroll, M., Phys. Rev. D, 75, 074503 (2007) · doi:10.1103/physrevd.82.079904
[21] Krantz, S. G.; Parks, H. R., A Primer of Real Analytic Functions (2002) · Zbl 1015.26030
[22] Markusevich, A. I., Theory of Functions, 2 (1985)
[23] Reed, M.; Simon, B., Modern Methods of Mathematical Physics, 4 (1978) · Zbl 0401.47001
[24] Kato, T., Perturbation Theory of Linear Operators (1966) · Zbl 0148.12601
[25] Wilson, K.; Zichichi, A., New Phenomena in Subnuclear Physics, Part A (1977)
[26] Simon, B., Representations of Finite and Compact Groups (1996) · Zbl 0840.22001
[27] Berezin, F. A., The Method of Second Quantization (1966) · Zbl 0151.44001
[28] Faria da Veiga, P. A.; O’Carroll, M.; Francisco Neto, A., Phys. Rev. D, 72, 034507 (2005) · doi:10.1103/physrevd.72.034507
[29] Creutz, M., Quarks, Gluons and Lattices (1983)
[30] Montvay, I.; Münster, G., Quantum Fields on a Lattice (1997)
[31] Osterwalder, K.; Seiler, E., Ann. Phys., 110, 440-471 (1978) · doi:10.1016/0003-4916(78)90039-8
[32] Francisco Neto, A.; Faria da Veiga, P. A.; O’Carroll, M., J. Math. Phys., 45, 628-641 (2004) · Zbl 1070.81115 · doi:10.1063/1.1636000
[33] Reed, M.; Simon, B., Modern Methods of Mathematical Physics, 1 (1972) · Zbl 0242.46001
[34] Michael Range, R., Holomorphic Functions and Integral Representations in Several Complex Variables, GTM 108 (1986) · Zbl 0591.32002
[35] Nishino, T., Function Theory in Several Complex Variables, 193 (1996)
[36] Hormander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 256 (1990) · Zbl 0712.35001
[37] Eckmann, J.-P.; Epstein, H., Commun. Math. Phys., 68, 245-258 (1979) · doi:10.1007/BF01221126
[38] Eckmann, J.-P.; Magnen, J.; Sénéor, R., Commun. Math. Phys., 39, 251-271 (1975) · doi:10.1007/BF01705374
[39] Magnen, J.; Sénéor, R., Commun. Math. Phys., 56, 237-275 (1977) · doi:10.1007/BF01614211
[40] Feldman, J.; Magnen, J.; Rivasseau, V.; Sénéor, R., Commun. Math. Phys., 103, 67-103 (1986) · Zbl 0594.58060 · doi:10.1007/BF01464282
[41] Iagolnitzer, D., Scattering in Quantum Field Theories, the Axiomatic and Constructive Approaches (1993) · Zbl 0801.47004
[42] Schor, R. S.; O’Carroll, M., Commun. Math. Phys., 103, 569-597 (1986) · Zbl 0615.58030 · doi:10.1007/BF01211166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.