×

Feasibility of DEIM for retrieving the initial field via dimensionality reduction. (English) Zbl 07500740

Summary: When parameter estimation is solved in a high-dimensional space, the dimensionality reduction strategy becomes the primary consideration for alleviating the tremendous computational cost. In the present study, the discrete empirical interpolation method (DEIM) is explored to retrieve the initial condition (IC) by combining the polynomial chaos (PC) based ensemble Kalman filter (i.e. PC-EnKF), where a non-intrusive PC expansion is considered as a surrogate model in place of the forward model in the prediction step of the ensemble Kalman filter, resulting in fewer forward model integrations but with a comparable accuracy as Monte Carlo-based approaches. The DEIM acts as a hyper-reduction tool to provide the low-dimensional input for the high-dimensional initial field, which can be reconstructed using the information on the sparse interpolation grid points that is adaptively obtained through PC-EnKF data assimilation method. Thus an innovative framework to reconstruct the IC is developed. The detailed procedure at each assimilation iteration includes: the determination of the spatial interpolation points, the estimation of the initial values on the interpolation locations using the optimal observations, and the reconstruction of IC in the full space. The current study uses the reconstruction field of initial conditions of the Navier-Stokes equations as an example to illustrate the efficacy of our method. The experimental results demonstrate the proposed algorithm achieves a satisfactory reconstruction for the initial field. The proposed method helps to extend the applicable area of DEIM in solving inverse problems.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kerschen, Gaetan; Golinval, Jean-Claude; Vakakis, Alexander F.; Bergman, Lawrence A., The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dyn., 41, 147-169 (2005) · Zbl 1103.70011
[2] Cordier, L.; Abou El Majd, B.; Favier, J., Calibration of POD reduced-order models using Tikhonov regularization, Int. J. Numer. Methods Fluids, 63, 269-296 (2010) · Zbl 1425.76181
[3] Du, Juan; Navon, I. M.; Zhu, Jiang; Fang, Fangxin; Alekseev, A. K., Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II: trust region POD 4D VAR data assimilation, Comput. Math. Appl., 65, 3, 380-394 (2013) · Zbl 1319.76030
[4] Altaf, M. U.; El Gharamti, M.; Heemink, A. W.; Hoteit, I., A reduced adjoint approach to variational data assimilation, Comput. Methods Appl. Mech. Eng., 254, 1-13 (2013) · Zbl 1297.93053
[5] Yildirim, B.; Chryssostomidis, C.; Karniadakis, G. E., Efficient sensor placement for ocean measurements using low-dimensional concepts, Ocean Model., 27, 160-173 (2009)
[6] Kaercher, Mark; Boyaval, Sébastien; Grepl, Martin; Veroy, Karen, Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation, Optim. Eng., 19, 3, 663-695 (2018) · Zbl 1507.49026
[7] Fang, F.; Pain, C. C.; Navon, I. M.; Xiao, D., An efficient goal based reduced order model approach for targeted adaptive observations, Int. J. Numer. Methods Fluids, 83, 3, 263-275 (2017)
[8] Stefanescu, R.; Sandu, A.; Navon, I. M., POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation, J. Comput. Phys., 295, 569-595 (2015) · Zbl 1349.76535
[9] Ruiz, Juan Jose; Pulido, Manuel; Miyoshi, Takemasa, Estimating model parameters with ensemble-based data assimilation: a review, J. Meteorol. Soc. Jpn., 91, 2, 79-99 (2013)
[10] Le Dimet, F. X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, 38, 97-110 (1986)
[11] Courtier, P.; Talagrand, O., Variational assimilation of meteorological observations with direct and adjoint shallow water equations, Tellus, 531-549 (1990)
[12] Wang, Y. P.; Ren, L. L.; Zhang, Z. Y.; Lin, G.; Xu, C., Sparsity-promoting elastic net method with rotation for high-dimensional nonlinear inverse problem, Comput. Methods Appl. Mech. Eng., 345, 263-282 (2019) · Zbl 1440.65065
[13] Wang, J.; Zabaras, N., Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transf., 48, 1, 15-29 (2005) · Zbl 1122.80307
[14] Navon, I. M., Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dyn. Atmos. Ocean., 27, 55-79 (1997)
[15] Daescu, D. N.; Navon, I. M., A dual-weighted approach to order reduction in 4DVAR data assimilation, Mon. Weather Rev., 136, 3, 1026-1041 (2008)
[16] Bellsky, Thomas; Kostelich, Eric J.; Mahalov, Alex, Kalman filter data assimilation: targeting observations and parameter estimation, Chaos, 24, Article 024406 pp. (2014) · Zbl 1345.94011
[17] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 137-167 (2003) · Zbl 1047.76111
[18] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[19] Zeng, L.; Chang, H.; Zhang, D., A probabilistic collocation-based Kalman filter for history matching, SPE J., 16, 2, 294-306 (2011)
[20] Rochoux, M. C.; Ricci, S.; Lucor, D.; Cuenot, B.; Trouvé, A., Towards predictive data-driven simulations of wildfire spread - Part I: reduced-cost ensemble Kalman filter based on a polynomial chaos surrogate model for parameter estimation, Nat. Hazards Earth Syst. Sci., 14, 2951-2973 (2014)
[21] Marzouk, Y. M.; Najm, H. N., Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228, 6, 1862-1902 (2009) · Zbl 1161.65308
[22] Alekseev, A. K.; Navon, I. M.; Zelentsov, M. E., The estimation of functional uncertainty using polynomial chaos and adjoint equations, Int. J. Numer. Methods Fluids, 67, 3, 328-341 (2011) · Zbl 1226.65075
[23] Matthies, Hermann G.; Keese, Andreas, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295-1331 (2005) · Zbl 1088.65002
[24] Uribe, Felipe; Papaioannou, Iason; Betz, Wolfgang; Straub, Daniel, Bayesian inference of random fields represented with the Karhunen-Loève expansion, Comput. Methods Appl. Mech. Eng., 358, Article 112632 pp. (2020) · Zbl 1441.62080
[25] Sargsyan, Syuzanna; Brunton, Steven L.; Nathan Kutz, J., Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries, Phys. Rev. E, 92, Article 033304 pp. (2015)
[26] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[27] Sargsyan, Syuzanna; Brunton, Steven L.; Nathan Kutz, J., Online interpolation point refinement for reduced-order models using a genetic algorithm, SIAM J. Sci. Comput., 40, 1, B283-B304 (2018) · Zbl 1383.65123
[28] Sorensen, D. C.; Embree, Mark, A DEIM induced CUR factorization, SIAM J. Sci. Comput., 38, 3 (2016), A1454-A1482 · Zbl 1382.65121
[29] Manohar, Krithika; Brunton, Bingni W.; Nathan Kutz, J.; Brunton, Steven L., Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns, IEEE Control Syst. (2018) · Zbl 1477.93128
[30] Drmač, Zlatko; Gugercin, Serkan, A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions, SIAM J. Sci. Comput., 38, 2, A631-A648 (2016) · Zbl 1382.65193
[31] Drmač, Z.; Saibaba, A., The discrete empirical interpolation method: canonical structure and formulation in weighted inner product spaces, SIAM J. Matrix Anal. Appl., 39, 1152-1180 (2018) · Zbl 1415.65107
[32] Peherstorfer, B.; Butnaru, D.; Willcox, K.; Bungartz, H., Localized discrete empirical interpolation method, SIAM J. Sci. Comput., 36, A168-A192 (2014) · Zbl 1290.65080
[33] Peherstorfer, B.; Drmač, Z.; Gugercin, Serkan, Stabilizing discrete empirical interpolation via randomized and deterministic oversampling (2018)
[34] Manohar, K.; Brunton, S. L.; Kutz, J. N., Environment identification in flight using sparse approximation of wing strain, J. Fluids Struct., 70, 162-180 (2017)
[35] Jayaraman, Balaji; Abdullah, S. M.; Mamun, Al; Lu, Chen, Interplay of sensor quantity, placement and system dimension in POD-based sparse reconstruction of fluid flows, Fluids, 4, 2, 109 (2019)
[36] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[37] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 339, 667-672 (2004) · Zbl 1061.65118
[38] Yan, L.; Guo, L., Stochastic collocation algorithms using \(l_1\)-minimization for Bayesian solution of inverse problems, SIAM J. Sci. Comput., 37, 3, 1410-1435 (2015) · Zbl 1328.65200
[39] Yang, X.; Karniadakis, G. E., Reweighted \(l_1\) minimization method for stochastic elliptic differential equations, J. Comput. Phys., 248, 87-108 (2013) · Zbl 1349.60113
[40] Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R., Least angle regression, Ann. Stat., 32, 2, 407-451 (2004) · Zbl 1091.62054
[41] Figueiredo, M. A.T.; Nowak, R. D.; Wright, S. J., Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1, 4, 586-597 (2008)
[42] Daubechies, I.; Defrise, M.; Mol, C. D., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57, 11, 1413-1457 (2010) · Zbl 1077.65055
[43] Ji, S.; Xue, Y.; Carin, L., Bayesian compressive sensing, IEEE Trans. Signal Process., 56, 6, 2346-2356 (2008) · Zbl 1390.94231
[44] Wang, Yuepeng; Hu, Kun; Ren, Lanlan; Lin, Guang, Optimal observations-based retrieval of topography in 2D shallow water equations using PC-EnKF, J. Comput. Phys., 382, 43-60 (2019) · Zbl 1451.62165
[45] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys., 335, 736-746 (2017) · Zbl 1382.65229
[46] Shankar, P. N.; Deshpande, M. D., Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32, 93-136 (2000) · Zbl 0988.76006
[47] Bui-Thanh, T.; Willcox, K.; Ghattas, O.; van Bloemen Waanders, B., Goal-oriented, model-constrained optimization for reduction of large-scale systems, J. Comput. Phys., 224, 880-896 (2007) · Zbl 1123.65081
[48] Brown, D. L.; Cortez, R.; Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 168, 2, 464-499 (2001) · Zbl 1153.76339
[49] Févrière, C.; Laminie, J.; Poullet, P.; Poullet, P., On the penalty-projection method for the Navier-Stokes equations with the MAC mesh, J. Comput. Appl. Math., 226, 228-245 (2009) · Zbl 1409.76023
[50] Huang, P.; Feng, X.; Liu, D., A stabilized finite element method for the time-dependent Stokes equations based on Crank-Nicolson scheme, Appl. Math. Model., 37, 4, 1910-1919 (2013) · Zbl 1349.76221
[51] Sahin, Mehmet; Owens, Robert G., A novel fully implicit finite volume method applied to the lid-driven cavity problem-Part I: high Reynolds number flow calculations, Int. J. Numer. Methods Fluids, 42, 57-77 (2003) · Zbl 1078.76046
[52] Seibold, B., A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains (2008), Massachusetts Institute of Technology, Master’s Thesis, Applied Mathematics
[53] Strang, G., Computational Science and Engineering (2007), Wellesley-Cambridge Press · Zbl 1194.65001
[54] Elman, Howard C.; Silvester, David J.; Wathen, Andrew J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford University Press · Zbl 1304.76002
[55] Hosder, S.; Walters, R. W.; Balch, M., Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables, (AIAA Non-Deterministic Approaches Conference, vol. 4 (2007)), 23-26
[56] Peherstorfer, Benjamin; Willcox, Karen; Gunzburger, Max, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 3, 550-591 (2018) · Zbl 1458.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.