×

Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method. (English) Zbl 1349.76291

Summary: An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76T30 Three or more component flows

Software:

Proteus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apte, S. V.; Martin, M.; Patankar, N. A., A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows, J. Comput. Phys., 228, 8, 2712-2738 (2009) · Zbl 1282.76148
[2] Buchan, A.; Farrell, P.; Gorman, G.; Goddard, A.; Eaton, M.; Nygaard, E.; Angelo, P.; Smedley-Stevenson, R.; Merton, S.; Smith, P., The immersed body supermeshing method for modelling reactor physics problems with complex internal structures, Ann. Nucl. Energy, 63, 399-408 (2014)
[3] Cate, A. T.; Derksen, J. J.; Portela, L. M.; Van Den Akker, H. E., Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence, J. Fluid Mech., 519, 233-271 (2004) · Zbl 1065.76194
[4] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, Drops, and Particles (2005), Courier Corporation
[5] Cotter, C. J.; Ham, D. A.; Pain, C. C., A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Model., 26, 1, 86-90 (2009)
[6] Engels, T.; Kolomenskiy, D.; Schneider, K.; Sesterhenn, J., Numerical simulation of fluid-structure interaction with the volume penalization method, J. Comput. Phys., 281, 96-115 (2015) · Zbl 1351.76202
[7] Farhat, C.; Lesoinne, M.; Le Tallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Eng., 157, 1, 95-114 (1998) · Zbl 0951.74015
[8] Farrell, P. E.; Maddison, J. R., Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Eng., 200, 1-4, 89-100 (2011) · Zbl 1225.76193
[9] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid: Part 1. Sedimentation, J. Fluid Mech., 261, 95-134 (1994) · Zbl 0800.76114
[10] Feng, Z.-G.; Michaelides, E. E., Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys., 202, 1, 20-51 (2005) · Zbl 1076.76568
[11] Gabitto, J.; Tsouris, C., Drag coefficient and settling velocity for particles of cylindrical shape, Powder Technol., 183, 2, 314-322 (2008)
[12] García, X.; Pavlidis, D.; Gorman, G. J.; Gomes, J. L.; Piggott, M. D.; Aristodemou, E.; Mindel, J.; Latham, J.-P.; Pain, C. C.; ApSimon, H., A two-phase adaptive finite element method for solid-fluid coupling in complex geometries, Int. J. Numer. Methods Fluids, 66, 1, 82-96 (2011) · Zbl 1429.76101
[13] Gibou, F.; Min, C., Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions, J. Comput. Phys., 231, 8, 3246-3263 (2012) · Zbl 1400.76049
[14] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2, 363-426 (2001) · Zbl 1047.76097
[15] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[16] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 112, 1, 133-148 (1994) · Zbl 0845.76069
[17] Gresho, P. M.; Sani, R. L., Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow (1998), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York, NY (United States) · Zbl 0941.76002
[18] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 1, 10-49 (2007) · Zbl 1163.76041
[19] Hsu, M.-C.; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput. Mech., 50, 6, 821-833 (2012) · Zbl 1311.74038
[20] Hübner, B.; Walhorn, E.; Dinkler, D., A monolithic approach to fluid-structure interaction using space-time finite elements, Comput. Methods Appl. Mech. Eng., 193, 23, 2087-2104 (2004) · Zbl 1067.74575
[21] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 3, 331-347 (2003)
[22] Jaiman, R. K.; Jiao, X.; Geubelle, P. H.; Loth, E., Conservative load transfer along curved fluid-solid interface with non-matching meshes, J. Comput. Phys., 218, 1, 372-397 (2006) · Zbl 1158.76405
[23] Jayaweera, K.; Mason, B., The behaviour of freely falling cylinders and cones in a viscous fluid, J. Fluid Mech., 22, 4, 709-720 (1965) · Zbl 0136.23303
[24] Jewer, S.; Buchan, A.; Pain, C.; Cacuci, D., An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies, Ann. Nucl. Energy, 68, 124-135 (2014)
[25] Kawasaki, K.; Mizutani, N., Numerical simulation of bore-induced dynamic behavior of rigid body using 2-D multiphase flow numerical model, (Proceedings of International Conference on Coastal Structures (2007), World Scientific), 1477-1488
[26] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 9, 3663-3684 (2012) · Zbl 1402.76143
[27] Latham, J.-P.; Anastasaki, E.; Xiang, J., New modelling and analysis methods for concrete armour unit systems using FEMDEM, Coast. Eng., 77, 151-166 (2013)
[28] Latham, J.-P.; Mindel, J.; Xiang, J.; Guises, R.; Garcia, X.; Pain, C.; Gorman, G.; Piggott, M.; Munjiza, A., Coupled FEMDEM/fluids for coastal engineers with special reference to armour stability and breakage, Geomech. Geoengin., Int. J., 4, 1, 39-53 (2009)
[29] Lee, L.; LeVeque, R. J., An immersed interface method for incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 25, 3, 832-856 (2003) · Zbl 1163.65322
[30] LeVeque, R. J.; Li, Z., Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 3, 709-735 (1997) · Zbl 0879.76061
[31] Mark, A.; van Wachem, B. G., Derivation and validation of a novel implicit second-order accurate immersed boundary method, J. Comput. Phys., 227, 13, 6660-6680 (2008) · Zbl 1338.76098
[32] Michler, C.; Hulshoff, S.; Van Brummelen, E.; De Borst, R., A monolithic approach to fluid-structure interaction, Comput. Fluids, 33, 5, 839-848 (2004) · Zbl 1053.76042
[33] Mindel, J. E.; Collins, G. S.; Latham, J. P.; Pain, C. C.; Munjiza, A., Towards a numerical wave simulator using the two-fluid interface tracking approach combined with a novel ALE scheme, (Proceedings of the Fifth International Conference on Coastal Structures. Proceedings of the Fifth International Conference on Coastal Structures, Venice (2007), World Scientific)
[34] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[35] Pain, C.; Piggott, M.; Goddard, A.; Fang, F.; Gorman, G.; Marshall, D.; Eaton, M.; Power, P.; De Oliveira, C., Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10, 1, 5-33 (2005)
[36] Pain, C.; Umpleby, A.; De Oliveira, C.; Goddard, A., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng., 190, 29, 3771-3796 (2001) · Zbl 1008.76041
[37] Pavlidis, D.; Gomes, J. L.; Xie, Z.; Percival, J. R.; Pain, C. C.; Matar, O. K., Compressive advection and multi-component methods for interface-capturing, Int. J. Numer. Methods Fluids, 80, 4, 256-282 (2016)
[38] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[39] Piggott, M.; Farrell, P.; Wilson, C.; Gorman, G.; Pain, C., Anisotropic mesh adaptivity for multi-scale ocean modelling, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 367, 1907, 4591-4611 (2009) · Zbl 1192.86009
[40] Piggott, M.; Gorman, G.; Pain, C.; Allison, P.; Candy, A.; Martin, B.; Wells, M., A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, Int. J. Numer. Methods Fluids, 56, 8, 1003 (2008) · Zbl 1220.76045
[41] Pruppacher, H.; Le Clair, B.; Hamielec, A., Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers, J. Fluid Mech., 44, 4, 781-790 (1970)
[42] Rasheed, A.; Holdahl, R.; Kvamsdal, T.; Åkervik, E., A comprehensive simulation methodology for fluid-structure interaction of offshore wind turbines, Energy Proc., 53, 135-145 (2014)
[43] Robinson-Mosher, A.; Schroeder, C.; Fedkiw, R., A symmetric positive definite formulation for monolithic fluid structure interaction, J. Comput. Phys., 230, 4, 1547-1566 (2011) · Zbl 1390.74054
[44] Ryzhakov, P.; Rossi, R.; Idelsohn, S.; Oñate, E., A monolithic Lagrangian approach for fluid-structure interaction problems, Comput. Mech., 46, 6, 883-899 (2010) · Zbl 1344.74016
[45] Tan, Z.; Le, D.-V.; Li, Z.; Lim, K.; Khoo, B. C., An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane, J. Comput. Phys., 227, 23, 9955-9983 (2008) · Zbl 1317.76064
[46] Tu, C.; Peskin, C. S., Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods, SIAM J. Sci. Stat. Comput., 13, 6, 1361-1376 (1992) · Zbl 0760.76067
[47] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[48] Van Loon, R.; Anderson, P.; Van de Vosse, F.; Sherwin, S., Comparison of various fluid-structure interaction methods for deformable bodies, Comput. Struct., 85, 11, 833-843 (2007)
[49] van Loon, R.; Anderson, P. D.; van de Vosse, F. N., A fluid-structure interaction method with solid-rigid contact for heart valve dynamics, J. Comput. Phys., 217, 2, 806-823 (2006) · Zbl 1099.74044
[50] Viré, A.; Xiang, J.; Milthaler, F.; Farrell, P. E.; Piggott, M. D.; Latham, J.-P.; Pavlidis, D.; Pain, C. C., Modelling of fluid-solid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model, Ocean Dyn., 62, 10-12, 1487-1501 (2012)
[51] Viré, A.; Xiang, J.; Pain, C., An immersed-shell method for modelling fluid-structure interactions, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 373, 2035, 20140085 (2015)
[52] Wang, H.; Chessa, J.; Liu, W. K.; Belytschko, T., The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members, Int. J. Numer. Methods Eng., 74, 1, 32-55 (2008) · Zbl 1159.74437
[53] Xiang, J.; Latham, J.-P.; Vire, A.; Anastasaki, E.; Pain, C. C., Coupled fluidity/Y3D technology and simulation tools for numerical breakwater modelling, Coastal Eng. Proc., 1, 33, Article structures.66 pp. (2012)
[54] Xiang, J.; Munjiza, A.; Latham, J.-P., Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method, Int. J. Numer. Methods Eng., 79, 8, 946-978 (2009) · Zbl 1171.74453
[55] Yu, Z.; Phan-Thien, N.; Fan, Y.; Tanner, R. I., Viscoelastic mobility problem of a system of particles, J. Non-Newton. Fluid Mech., 104, 2, 87-124 (2002) · Zbl 1058.76592
[56] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method: Solid Mechanics, vol. 2 (2000), Butterworth-Heinemann · Zbl 0991.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.