×

A POD reduced order model for resolving angular direction in neutron/photon transport problems. (English) Zbl 1352.82030

Summary: This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE’s angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively.{ }It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model’s capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.

MSC:

82D75 Nuclear reactor theory; neutron transport
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
35Q20 Boltzmann equations
45K05 Integro-partial differential equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

PETSc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fukunaga, K., Introduction to Statistical Pattern Recognition, Computer Science and Scientific Computing (1990), Academic Press · Zbl 0711.62052
[2] Jolliffe, I. T., Principal Component Analysis (October 2002), Springer: Springer Berlin
[3] Crommelin, D. T.; Majda, A. J., Strategies for model reduction: comparing different optimal bases, J. Atmos. Sci., 61, 2206-2217 (2004)
[4] Majda, A. J.; Timofeyev, I.; Vanden-Eijnden, E., Systematic strategies for stochastic mode reduction in climate, J. Atmos. Sci., 60, 14, 1705-1722 (July 2003)
[5] Du, J.; Zhu, J.; Navon, I. M., An optimizing finite difference scheme based on proper orthogonal decomposition for CVD equations, Int. J. Numer. Methods Biomed. Eng., 27, 78-94 (2011) · Zbl 1429.35184
[6] Cao, Y.; Navon, I. M.; Luo, Z., A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition, Int. J. Numer. Methods Fluids, 53, 1571-1583 (2007) · Zbl 1370.86002
[7] Cao, Y.; Zhu, J.; Luo, Z.; Navon, I. M., Reduced order modeling of the upper tropical pacific ocean model using proper orthogonal decomposition, Comput. Math. Appl., 52, 1373-1386 (2006) · Zbl 1161.86002
[8] Sirovich, L., Turbulence and the dynamics of coherent structures, Q. Appl. Math., 5, 561-590 (1987) · Zbl 0676.76047
[9] Sirovich, L., Turbulence and the dynamics of coherent structures, part III: dynamics and scaling, Q. Appl. Math., XLV, 583-590 (1987) · Zbl 0676.76047
[10] Pearson, K., On lines and planes of closest fit to systems of points in space, Philos. Mag., 2, 6, 559-572 (1901) · JFM 32.0710.04
[11] Lumley, J. L., The structure of inhomogeneous turbulent flows, (Atmospheric Turbulence and Radio Propagation (1967), Nauka: Nauka Moscow), 166-178
[12] Bakewell, H. P.; Lumley, J. L., Viscous sublayer and adjacent wall region in turbulent pipe flow, Phys. Fluids, 10, 1880-1889 (1967)
[13] Payne, F. R.; Lumley, J. L., Large-eddy structure of the turbulent wake behind a circular cylinder, Phys. Fluids, 10, 194-196 (1967)
[14] Dean, A. E.; Mavriplis, C., Low-dimensional description of the dynamics in separated flow past thick airfoil, AIAA, 32, 1222-1227 (1994)
[15] Ball, K. S.; Sirovich, L.; Keefe, L. R., Dynamical eigenfunction decomposition of turbulent channel flow, Int. J. Numer. Methods Fluids, 12, 6, 585-604 (1991) · Zbl 0721.76042
[16] Delville, J.; Bellin, S.; Bonnet, J. P., Use of the proper orthogonal decomposition in a plane turbulent mixing layer, (Turbulence and Coherent Structures; Selected Papers from Turbulence 89 (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 75-90
[17] Sirovich, L.; Park, H., Turbulent thermal convection in a finite domain: part I. Theory, Phys. Fluids, 2, 1649-1658 (1990) · Zbl 0709.76062
[18] Park, H.; Sirovich, L., Turbulent thermal convection in a finite domain: part II. Numerical results, Phys. Fluids, 2, 1659-1668 (1990) · Zbl 0709.76063
[19] Fang, F.; Pain, C. C.; Navon, I. M.; Gorman, G. J.; Piggott, M. D.; Allison, P. A.; Farrell, P. E.; Goddard, A. J.H., A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows, Ocean Model., 28, 127-136 (2009) · Zbl 1163.86002
[20] Stefanescu, R.; Navon, I. M., POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, J. Comput. Phys., 237, 95-114 (2013) · Zbl 1286.76106
[21] Pettit, C. L.; Beran, P. S., Application of proper orthogonal decomposition to the discrete Euler equations, Int. J. Numer. Methods Eng., 55, 4, 479-497 (2002) · Zbl 1021.76037
[22] Burkardt, J.; Gunzburger, M.; Lee, H., POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Eng., 196, 337-355 (2006) · Zbl 1120.76323
[23] Du, J.; Navon, I. M.; Steward, J. L.; Alekseev, A. K.; Luo, Z., Reduced-order modeling based on POD of a parabolized Navier-Stokes equation model I: forward model, Int. J. Numer. Methods Fluids, 69, 3, 710-730 (2012)
[24] Du, J.; Navon, I. M.; Alekseev, A. K.; Luo, Z., Reduced-order modeling based on POD of a parabolized Navier-Stokes equation model II: trust region POD 4-D VAR data assimilation, Comput. Math. Appl., 65, 380-394 (2013) · Zbl 1319.76030
[25] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[26] Du, J.; Fang, F.; Pain, C. C.; Navon, I. M.; Zhu, J.; Ham, D. A., POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow, Comput. Math. Appl., 65, 362-379 (2013) · Zbl 1319.76026
[27] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J. Comput. Phys., 263, 1-18 (2014) · Zbl 1349.76288
[28] Wols, F., Transient analyses of accelerator driven systems using modal expansion techniques (2010), Delft University of Technology, Master’s thesis
[29] Sartori, A.; Baroli, D.; Cammi, A.; Chiesa, D.; Luzzi, L.; Ponciroli, R.; Previtali, E.; Ricotti, M. E.; Rozza, G.; Sisti, M., Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics, Ann. Nucl. Energy, 71, 217-229 (2014)
[30] Buchan, A. G.; Pain, C. C.; Fang, F.; Navon, I. M., A POD reduced-order model for eigenvalue problems with application to reactor physics, Int. J. Numer. Methods Eng., 95, 12, 1011-1032 (2013) · Zbl 1352.82018
[31] Reed, Richard L.; Roberts, Jeremy A., An energy basis for response matrix methods based on the Karhunen-Loéve transform, Ann. Nucl. Energy, 78, 0, 70-80 (2015)
[32] Buchan, A. G.; Pain, C. C.; Eaton, M. D.; Smedley-Stevenson, R. P.; Goddard, A. J.H., Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation, Ann. Nucl. Energy, 32, 1224-1273 (2005)
[33] Buchan, A. G.; Candy, A. S.; Merton, S. R.; Pain, C. C.; Hadi, J. L.; Eaton, M. D.; Goddard, A. J.H.; Smedley-Stevenson, R. P.; Pearce, G. J., The inner-element subgrid scale finite element method for the Boltzmann transport equation, Nucl. Sci. Eng., 164, 105-122 (2010)
[34] Buchan, A. G.; Pain, C. C.; Umpleby, A. P.; Smedley-Stevenson, R. P., A sub-grid scale finite element agglomeration multigrid method with application to the Boltzmann transport equation, Int. J. Numer. Methods Eng., 92, 3, 318-342 (2012) · Zbl 1352.65623
[35] Eaton, M. D., A high-resolution Riemann method for solving radiation transport problems on unstructured meshes (2004), Imperial College of Science, Technology and Medicine, University of London, PhD thesis
[36] Adams, M. L., Angular dependence of the fast flux in reactor lattices, (American Nuclear Society 2001 Annual Meeting (2001)), 212-214
[37] Balay, S.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., Portable, extensible toolkit for scientific computation (PETSc) users manual (2004), Argonne National Laboratory, Technical Report ANL-95/11 - Revision 2.1.5
[38] Goffin, M. A.; Buchan, A. G.; Belme, A. C.; Pain, C. C.; Eaton, M. D.; Smith, P. N.; Smedley-Stevenson, R. P., Goal-based angular adaptivity applied to the spherical harmonics discretisation of the neutral particle transport equation, Ann. Nucl. Energy, 71, 60-80 (September 2014)
[39] Manalo, K.; Ahrens, C. D.; Sjoden, G., Advanced quadratures for three-dimensional discrete ordinate transport simulations: a comparative study, Ann. Nucl. Energy, 81, 0, 196-206 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.