×

Turbulence on hyperbolic plane: the fate of inverse cascade. (English) Zbl 1307.35192

The authors consider an inverse cascade scenario for the 2D turbulence in the hyperbolic plane \(\mathbb{H}_R\) with the parametrization by the complex coordinate \(z\), \(| z|<1\) \[ X^1+iX^2=\frac{2Rz}{1-| z|^2},\quad X^3=\frac{R(1+| z|^2)}{1-| z|^2}. \] In this coordinates, the Riemannian metric is \[ g_R=R^2\frac{4\,dz\,d\bar{z}}{(1-| z|^2)^2}. \] Here, \(R\) is the scale of the metric with the dimension of length. At the same time \(R\) is the constant negative curvature of \(\mathbb{H}_R\). The turbulent flow is described by the Navier-Stokes equations with a random Gaussian white-in-time forcing operating on scales much shorter then the parameter \(R\). The long-distance behavior of the energy is investigated in the paper. It is found that the energy is cumulated in ring-like vortices of arbitrary diameter but of width of order \(R\).
The theory of the Euler and Navier-Stokes equations on Riemannian manifolds is recalled in the paper. The long-time long-distance scaling limit of the theory on the hyperbolic plane is studied too. There are six appendices collected a supplementary and technical material.

MSC:

35Q30 Navier-Stokes equations
35Q31 Euler equations
76F20 Dynamical systems approach to turbulence
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arneodo, A., et al.: Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett. 34, 411-416 (1996) · doi:10.1209/epl/i1996-00472-2
[2] Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319-361 (1966) · Zbl 0148.45301 · doi:10.5802/aif.233
[3] Arnold, V.I., Khesin, B.: Topological Methods in Hydrodynamics, vol. 125. Springer, New York (1997) · Zbl 0743.76019
[4] Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. 12, 233-239 (1969) · Zbl 0217.25801 · doi:10.1063/1.1692443
[5] Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2, 124-128 (2006) · doi:10.1038/nphys217
[6] Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Inverse turbulent cascades and conformally invariant curves. Phys. Rev. Lett. 98, 024501 (2007) · doi:10.1103/PhysRevLett.98.024501
[7] Boffetta, A.B., Vergassola, M.: Inverse cascade in two-dimensional turbulence: deviations from Gaussianity. Phys. Rev. E 61, R29R32 (2000)
[8] Boffetta, G., Musacchio, S.: Evidence for the double cascade scenario in two dimensional turbulence. Phys. Rev. E 82, 016307 (2010) · Zbl 1184.76063 · doi:10.1103/PhysRevE.82.016307
[9] G. Carron: \[L^2\] L2 harmonics forms on non-compact manifolds, arXiv:0704.3194 [math.DG] · Zbl 1038.58023
[10] Chan, C.H., Czubak, M.: Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting. Dyn PDE 10, 43-77 (2013) · Zbl 1307.35189
[11] Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[12] Falkovich, G.: Fluid Mechanics, a Short Course for Physicists. Cambridge University Press, Cambridge (2011) · Zbl 1271.76001
[13] Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913-975 (2001) · Zbl 1205.76133 · doi:10.1103/RevModPhys.73.913
[14] Frisch, U.: Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995) · Zbl 0832.76001
[15] Frisch U., Villone B.: Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow, arXiv:1402.4957 [math.HO]
[16] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam (2007) · Zbl 1208.65001
[17] Hilbert, D.: Über Flächen von constanter Gaußscher Krümmung. Trans. Am. Math. Soc. 2, 8799 (1901) · JFM 32.0608.01
[18] Kellay, H., Goldburg, W.I.: Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys. 65, 845-894 (2002) · doi:10.1088/0034-4885/65/5/204
[19] Khesin, B., Misiolek, G.: The Euler and Navier-Stokes equations on the hyperbolic plane. Proc. Nat. Acad. Sci. 109, 18324-18326 (2012) · doi:10.1073/pnas.1210350109
[20] Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417-1423 (1967) · doi:10.1063/1.1762301
[21] Kuksin, S., Shirikyan, A.: Mathematics of Two-dimensional Turbulence. Cambridge University Press, Cambridge (2012) · Zbl 1333.76003 · doi:10.1017/CBO9781139137119
[22] Paret, J., Tabeling, P.: Intermittency in the 2D inverse cascade of energy: experimental observations. Phys. Fluids 10, 3126-3136 (1998) · doi:10.1063/1.869840
[23] Vilenkin, N.J.: Special functions and the theory of group representations. Am. Math. Soc. Trans. 2, 207-316 (1968)
[24] Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydrodynamics. Kluwer Academic Publishers, Dordrecht (1988) · Zbl 0688.35077 · doi:10.1007/978-94-009-1423-0
[25] Vucelja, M., Falkovich, G., Turitsyn, K.S.: Fractal iso-contours of passive scalar in two-dimensional smooth random flows. J. Stat. Phys. 147, 424-435 (2012) · Zbl 1245.82070 · doi:10.1007/s10955-012-0474-1
[26] Xia, H., Shats, M., Falkovich, G.: Spectrally condensed turbulence in thin layers. Phys. Fluids 21, 125101 (2009) · Zbl 1183.76577 · doi:10.1063/1.3275861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.