×

Redefinition of mutual information in the fuzzy sets framework for computational genomics. (English) Zbl 1221.92044

Madani, Kurosh (ed.) et al., Computational intelligence. Revised and selected papers of the 1st international joint conference IJCCI 2009 held in Funchal, Madeira, Portugal, October 5–7, 2009. Berlin: Springer (ISBN 978-3-642-20205-6/hbk; 978-3-642-20206-3/ebook). Studies in Computational Intelligence 343, 73-83 (2011).
Summary: Mutual information is a measure of correlation between two discrete random variables: the aim of this work is to provide a new definition of mutual information using concepts from fuzzy sets theory, to extend it to continuous variables. With this approach, we extended the model on which the well known REVEAL algorithm for reverse engineering of gene regulatory networks is based and we designed a new flexible version of it, called FuzzyReveal, able to avoid the loss of information caused by the binarization of the continuous biological variables. The predictive power of our new version of the algorithm is promising, being both significantly higher than the one of REVEAL and comparable with a state-of-the-art algorithm on a set of simulated problems.
For the entire collection see [Zbl 1217.68014].

MSC:

92C42 Systems biology, networks
68T05 Learning and adaptive systems in artificial intelligence
62B86 Statistical aspects of fuzziness, sufficiency, and information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, pp. 18-29 (1998)
[2] Coletti, G.; Scozzafava, R., Conditional probability, fuzzy sets, and possibility: a unifying view, Fuzzy Sets and Systems, 144, 227-249 (2004) · Zbl 1076.68082 · doi:10.1016/j.fss.2003.10.022
[3] Shannon, C. E., A mathematical theory of communication, The Bell Systems Technical Journal, 27, 379-423 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[4] Coletti, G.; Scozzafava, R., Probabilistic Logic in a Coherent Setting (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1005.60007 · doi:10.1007/978-94-010-0474-9
[5] Coletti, G.; Scozzafava, R., Conditional probability and fuzzy information, Computational Statistics & Data Analysis, 51, 115-132 (2006) · Zbl 1157.62311 · doi:10.1016/j.csda.2006.04.028
[6] de Finetti, B.: Teoria della Probabilità, Einaudi, Torino (1970)
[7] Reka, A.; Barabási, A. L., Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47-97 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[8] Grilly, C.; Stricker, J.; Pang, W. L., A synthetic gene network for tuning protein degradation in saccharomyces cerevisiae, Mol. Syst. Biol., 3, 127 (2007) · doi:10.1038/msb4100168
[9] Smith, V. A.; Jarvis, E. D.; Hartemink, A. J., Evaluating functional network inference using simulations of complex biological systems, Bioinformatics, 18, 216-224 (2002) · doi:10.1093/bioinformatics/18.suppl_1.S216
[10] Mendes, P.; Sha, W.; Ye, K., Artificial gene networks for objective comparison of analysis algorithms, Bioinformatics, 19, 122-129 (2003) · doi:10.1093/bioinformatics/btg1069
[11] Di Camillo, B.; Toffolo, G.; Cobelli, C., A gene network simulator to assess reverse engineering algorithms, Ann. N Y Acad. Sci., 1158, 125-142 (2009) · doi:10.1111/j.1749-6632.2008.03756.x
[12] Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (2006)
[13] Mitra, S.; Hayashi, T., Bioinformatics with soft computing, IEEE Transactions on Systems, Man, and Cybernetics, 36, 616-635 (2006) · doi:10.1109/TSMCC.2006.879384
[14] Zhou, X.; Wang, X.; Dougherty, E. R.; Russ, D.; de Suh, E., Gene clustering based on clusterwide mutual information, Journal of Computational Biology, 11, 147-161 (2004) · doi:10.1089/106652704773416939
[15] Maji, P., Pal, K.S.: Fuzzy-rough sets for information measures and selection of relevant genes from microarray data. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics (2010) (retrieved on April 2010) (to appear)
[16] Xu, F., Miao, D., Wei, L.: Fuzzy-rough attribute reduction via mutual information with an application to cancer classification. Computers and Mathematics with Applications (2008) · Zbl 1186.68398
[17] Ding, S. F.; Xia, S. X.; Jin, F. X.; Shi, Z. Z., Novel fuzzy information proximity measures, Journal of Information Science, 33, 678-685 (2007) · doi:10.1177/0165551507076332
[18] De Luca, A.; Termini, S., A definition of a non-probabilistic entropy in the setting of fuzzy sets theory, Information and Control, 20, 301-312 (1972) · Zbl 0239.94028 · doi:10.1016/S0019-9958(72)90199-4
[19] Nam, D.; Seo, S.; Kim, S., An efficient top-down search algorithm for learning boolean networks of gene expression, Machine Learning, 65, 229-245 (2006) · Zbl 1470.68149 · doi:10.1007/s10994-006-9014-z
[20] Sambo, F., Di Camillo, B., Falda, M., Toffolo, G., Badaloni, S.: CNET: an algorithm for the inference of gene regulatory interactions from gene expression time series. In: Proceedings of the 14th Workshop on Intelligent Data Analysis in Medicine and Pharmacology IDAMAP 2009, Verona, Italy, pp. 23-28 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.