zbMATH — the first resource for mathematics

Optimal control of a linear unsteady fluid-structure interaction problem. (English) Zbl 1346.35033
Summary: In this paper, we consider optimal control problems governed by linear unsteady fluid-structure interaction problems. Based on a novel symmetric monolithic formulation, we derive optimality systems and provide regularity results for optimal solutions. The proposed formulation allows for natural application of gradient-based optimization algorithms and for space-time finite element discretizations.

35B65 Smoothness and regularity of solutions to PDEs
35M33 Initial-boundary value problems for mixed-type systems of PDEs
49K20 Optimality conditions for problems involving partial differential equations
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI
[1] Bertoglio, C; Barber, D; Gaddum, N; Valverde, I; Rutten, M; Beerbaum, P; Moireau, P; Hose, R; Gerbeau, J, Identification of artery wall stiffness: in vitro validation and in vivo results of data assimilation procedure applied to a 3D fluid-structure interaction model, J. Biomech., 47, 1027-1034, (2014)
[2] Bertoglio, C; Chapelle, D; Fernández, M; Gerbeau, JF; Moireau, P, State observers of a vascular fluid-structure interaction model through measurements in the solid, Comput. Methods Appl. mech. Eng., 256, 149-168, (2013) · Zbl 1352.74103
[3] Bertoglio, C; Moireau, P; Gerbeau, JF, Sequential parameter estimation for fluid-structure problems: application to hemodynamics, Int. J. Numer. Meth. Biomed Eng., 28, 434-455, (2012)
[4] D’Elia, M., Mirabella, L., Passerini, T., Perego, M., Piccinelli, M.,Vergara, C.,Veneziani, A.: Applications of variational data assimilation in computational hemodynamics. In: Modeling of Physiological Flows. MS&A—Modeling, Simulation and Applications, vol. 5, pp. 363-394. Springer (2012)
[5] Lassila, T; Manzoni, A; Quarteroni, A; Rozza, G, A reduced computational and geometric framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 741-776, (2013)
[6] Razzaq, M; Tsotskas, C; Turek, S; Kipouros, T; Savill, M; Hron, J, Multi-objective optimization of a fluid structure interaction benchmarking, CMES Comput. Model. Eng. Sci., 90, 303-337, (2013) · Zbl 1356.74062
[7] Degroote, J; Hojjat, M; Stavropoulou, E; Wüchner, R; Bletzinger, KU, Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem, Struct. Multidiscip. Optim., 47, 77-94, (2013) · Zbl 1274.74103
[8] Martin, V; Clément, F; Decoene, A; Gerbeau, JF, Parameter identification for a one-dimensional blood flow model, ESAIM Proc., 14, 174-200, (2005) · Zbl 1070.92015
[9] Richter, T; Wick, T, Optimal control and parameter estimation for stationary fluid-structure interaction problems, SIAM J. Sci. Comput., 35, b1085-b1104, (2013) · Zbl 1282.35287
[10] Bertagna, L., D’Elia, M., Perego, M., Veneziani, A.: Data assimilation in cardiovascular fluid-structure interaction problems: an introduction. In: Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics, pp. 395-481. Springer (2014) · Zbl 1426.76761
[11] Perego, M; Veneziani, A; Vergara, C, A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem, SIAM J. Sci. Comput., 33, 1181-1211, (2011) · Zbl 1227.92010
[12] Moubachir, M., Zolesio, J.: Moving Shape Analysis and Control: Applications to Fluid Structure Interaction. Chapmann & Hall/CRC, Boca Raton, FL (2006) · Zbl 1117.49003
[13] Bucci, F; Lasiecka, I, Optimal boundary control with critical penalization for a PDE model of fluid-solid interaction, Calc. Var., 37, 217-235, (2010) · Zbl 1198.35278
[14] Lasiecka, I; Tuffaha, A, Optimal feedback synthesis for Bolza control problem arising in linearized fluid structure interaction, Int. Ser. Numer. Math., 158, 171-190, (2009) · Zbl 1206.35054
[15] Lasiecka, I; Tuffaha, A, Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid-structure interaction, Syst. Control Lett., 58, 499-509, (2009) · Zbl 1166.49036
[16] Manzoni, A; Quarteroni, A; Rozza, G, Shape optimization for viscous flows by reduced basis methods and free-form deformation, Int. J. Numer. Methods Fluids, 70, 646-670, (2012)
[17] Becker, R; Meidner, D; Vexler, B, Efficient numerical solution of parabolic optimization problems by finite element methods, Optim. Methods Softw., 22, 813-833, (2007) · Zbl 1135.35317
[18] Meidner, D; Vexler, B, Adaptive space-time finite element methods for parabolic optimization problems, SIAM J. Control Optim., 46, 116-142, (2007) · Zbl 1149.65051
[19] Meidner, D; Vexler, B, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints, SIAM J. Control Optim., 47, 1150-1177, (2008) · Zbl 1161.49026
[20] Meidner, D; Vexler, B, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part II: problems with control constraints, SIAM J. Control Optim., 47, 1301-1329, (2008) · Zbl 1161.49035
[21] Meidner, D; Vexler, B, A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems, SIAM J. Control Optim., 49, 2183-2211, (2011) · Zbl 1234.49030
[22] Razzaq, M.: Finite element simulation techniques for incompressible fluid-structure interaction with applications to bio-engineering and optimization. Ph.D. thesis, Technische Universität Dortmund (2011) · Zbl 1234.49030
[23] Wick, T.: Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics. Ph.D. thesis, University of Heidelberg (2011) · Zbl 1278.76005
[24] Du, Q; Gunzburger, MD; Hou, L; Lee, J, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9, 633-650, (2003) · Zbl 1039.35076
[25] Du, Q; Gunzburger, MD; Hou, L; Lee, J, Semidiscrete finite element approximation of a linear fluid-structure interaction problem, SIAM J. Numer. Anal., 42, 1-29, (2004) · Zbl 1159.74343
[26] Avalos, G; Lasiecka, I; Triggiani, R, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J., 15, 403-437, (2008) · Zbl 1157.35085
[27] Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties. In: Fluids and waves, Contemp. Math., vol. 440, pp. 15-54. Amer. Math. Soc., Providence, RI (2007) · Zbl 1297.74035
[28] Avalos, G; Triggiani, R, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discrete Contin. Dyn. Syst. Ser. S, 2, 417-447, (2009) · Zbl 1179.35010
[29] Avalos, G; Triggiani, R, Fluid-structure interaction with and without internal dissipation of the structure: a contrast study in stability, Evol. Equ. Control Theory, 2, 563-598, (2013) · Zbl 1277.35045
[30] Avalos, G; Triggiani, R, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., 22, 817-833, (2008) · Zbl 1158.35320
[31] Avalos, G; Triggiani, R, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Equ., 9, 341-370, (2009) · Zbl 1239.74022
[32] Avalos, G., Lasiecka, I., Triggiani, R.: Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system. In: Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math., vol. 158, pp. 1-33. Birkhäuser Verlag, Basel (2009) · Zbl 1205.35182
[33] Ignatova, M; Kukavica, I; Lasiecka, I; Tuffaha, A, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27, 467-499, (2014) · Zbl 1286.35272
[34] Zhang, X; Zuazua, E, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Rational Mech. Anal., 184, 49-120, (2007) · Zbl 1178.74075
[35] Barbu, V; Grujic, Z; Lasiecka, I; Tuffaha, A, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Recent Trends Appl. Anal., 440, 5582, (2007) · Zbl 1297.35234
[36] Barbu, V; Grujic, Z; Lasiecka, I; Tuffaha, A, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57, 1173-1207, (2008) · Zbl 1147.74016
[37] Kukavica, I; Tuffaha, A; Ziane, M, Strong solutions to a Navier-Stokes-Lamé system on a domain with non-flat boundary, Nonlinearity, 24, 159-176, (2011) · Zbl 1372.76029
[38] Kukavica, I; Tuffaha, A; Ziane, M, Strong solutions to a nonlinear fluid structure interaction system, J. Differ. Equ., 247, 1452-1478, (2009) · Zbl 1180.35415
[39] Dunne, T., Rannacher, R., Richter, T.: Numerical simulation of fluid-structure interaction based on monolithic variational formulations. In: G.P. Galdi, R. Rannacher (eds.) Contemporary Challenges in Mathematical Fluid Mechanics. World Scientific (2009)
[40] Richter, T; Wick, T, Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Comput. Methods Appl. Mech. Eng., 199, 2633-2642, (2010) · Zbl 1231.74436
[41] Johnson, C, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Method Appl. Mech., 107, 117-129, (1993) · Zbl 0787.65070
[42] Grisvards, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program (1985) · Zbl 1239.74022
[43] Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1972)
[44] Temam, R.: Navier-Stokes equations. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1984) · Zbl 0568.35002
[45] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York (1994) · Zbl 0949.35004
[46] Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg+Teubner, Wiesbaden (2009) · Zbl 1320.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.