zbMATH — the first resource for mathematics

Adaptive time-step control for nonlinear fluid-structure interaction. (English) Zbl 1406.76048
Summary: In this work, we consider time step control for variational-monolithic fluid-structure interaction. The fluid-structure interaction (FSI) system is based on the arbitrary Lagrangian-Eulerian approach and couples the incompressible Navier-Stokes equations with geometrically nonlinear elasticity resulting in a nonlinear PDE system. Based on the monolithic setting, we develop algorithms for temporal adaptivity that are based on a rigorous derivation of dual-weighted sensitivity measures and heuristic truncation-based time step control. The Fractional-Step-theta scheme is the underlying time-stepping method. In order to apply the dual-weighted residual method to our setting, a Galerkin interpretation of the Fractional-Step-theta scheme must be employed. All developments are substantiated with several numerical tests, namely FSI-benchmarks, including appropriate extensions, and a flapping membrane example.

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Asterino, M.; Grandmont, C., Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems, Numer. Math., 116, 4, 721-767, (2008) · Zbl 1426.74124
[2] Avalos, G.; Lasiecka, I.; Triggiani, R., Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J., 15, 3, 403-437, (2008) · Zbl 1157.35085
[3] Avalos, G.; Triggiani, R., The coupled PDE system arising in fluid/structure interaction. I. explicit semigroup generator and its spectral properties, (Fluids and Waves, Contemp. Math., vol. 440, (2007), Amer. Math. Soc. Providence, RI), 15-54 · Zbl 1297.74035
[4] Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Wells, D., The deal.II library, version 8.4, J. Numer. Math., 24, (2016) · Zbl 1348.65187
[5] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24/1-24/27, (2007) · Zbl 1365.65248
[6] Bazilevs, Y.; Takizawa, K.; Tezduyar, T., Computational fluid-structure interaction: methods and applications, (2013), Wiley · Zbl 1286.74001
[7] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 4, 173-199, (December 2001)
[8] Becker, R.; Braack, M.; Meidner, D.; Richter, T.; Vexler, B., The finite element toolkit gascoigne
[9] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math., 4, 237-264, (1996) · Zbl 0868.65076
[10] Becker, R.; Rannacher, R., An optimal control approach to error control and mesh adaptation in finite element methods, Acta Numer., 2001, 1-102, (2001), A. Iserles editor, Cambridge University Press · Zbl 1105.65349
[11] Besier, M.; Rannacher, R., Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incomressible flow, Int. J. Numer. Methods Fluids, 70, 1139-1166, (2012) · Zbl 1412.76060
[12] Birken, P.; Quint, K. J.; Hartmann, S.; Meister, A., A time-adaptive fluid-structure interaction method for thermal coupling, Comput. Vis. Sci., 13, 7, 331-340, (2010) · Zbl 1273.76369
[13] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods, (Texts in Applied Mathematics, vol. 15, (1994), Springer-Verlag New York) · Zbl 0804.65101
[14] Bristeau, M.; Glowinski, R.; Periaux, J., Numerical methods for the Navier-Stokes equations, Comput. Phys. Rep., 6, 73-187, (1987)
[15] (Bungartz, H.-J.; Mehl, M.; Schäfer, M., Fluid Structure Interaction II: Modelling, Simulation, Optimization, (2010), Springer Berlin)
[16] Bungartz, H.-J.; Schäfer, M., Fluid-structure interaction: modelling, simulation, optimization, Lecture Notes in Computational Science and Engineering, vol. 53, (2006), Springer
[17] Causin, P.; Gerbeau, J.-F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194, 4506-4527, (2005) · Zbl 1101.74027
[18] Ciarlet, P. G., The finite element method for elliptic problems, (Studies in Mathematics and Its Applications, vol. 4, (1978), North-Holland Publishing Co. Amsterdam-New York-Oxford) · Zbl 0383.65058
[19] Coutand, D.; Shkoller, S., Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176, 25-102, (2005) · Zbl 1064.74057
[20] Coutand, D.; Shkoller, S., The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179, 303-352, (2006) · Zbl 1138.74325
[21] Jodlbauer, D.; Wick, T., A monolithic FSI solver applied to the FSI 1, 2, 3 benchmarks, (Frei, S.; Holm, B.; Richter, T.; Wick, T.; Yang, H., Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers, Radon Series on Computational and Applied Mathematics, (2017), Walter de Gruyter Berlin)
[22] Davis, T. A.; Duff, I. S., An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 1, 140-158, (1997) · Zbl 0884.65021
[23] Donéa, J.; Fasoli-Stella, P.; Giuliani, S., Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems, (Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology, (1977)), page Paper B1/2
[24] Du, Q.; Gunzburger, M. D.; Hou, L.; Lee, J., Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9, 3, 633-650, (2003) · Zbl 1039.35076
[25] Du, Q.; Gunzburger, M. D.; Hou, L.; Lee, J., Semidiscrete finite element approximation of a linear fluid-structure interaction problem, SIAM J. Numer. Anal., 42, 1, 1-29, (2004) · Zbl 1159.74343
[26] Dunne, T., An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaption, Int. J. Numer. Methods Fluids, 51, 1017-1039, (2006) · Zbl 1158.76400
[27] Dunne, T.; Rannacher, R.; Richter, T., Numerical simulation of fluid-structure interaction based on monolithic variational formulations, (Contemporary Challenges in Mathematical Fluid Mechanics, (2009), World Scientific)
[28] Failer, L., Optimal control of time-dependent nonlinear fluid-structure interaction, (2017), Technische Universität München, PhD thesis
[29] Fernández, M. A.; Gerbeau, J.-F., Algorithms for fluid-structure interaction problems, (Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, (2009), Springer-Verlag Milano, Italia), 307-346
[30] Fick, P.; Brummelen, E.; Zee, K., On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 199, 3369-3385, (2010) · Zbl 1225.74085
[31] Formaggia, L.; Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 105-132, (1999) · Zbl 0942.65113
[32] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular mathematics: modeling and simulation of the circulatory system, (2009), Springer-Verlag Milano, Italia · Zbl 1300.92005
[33] Frei, S.; Richter, T.; Wick, T., Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates, J. Comput. Phys., 321, 874-891, (2016) · Zbl 1349.76202
[34] Galdi, G.; Rannacher, R., Fundamental trends in fluid-structure interaction, (2010), World Scientific · Zbl 1410.76010
[35] Gil, A. J.; Carreno, A. A.; Bonet, J.; Hassan, O., The immersed structural potential method for haemodynamic applications, J. Comput. Phys., 229, 8613-8641, (2010) · Zbl 1198.92010
[36] Girault, V.; Raviart, P.-A., Finite element method for the Navier-Stokes equations, Computer Series in Computational Mathematics, vol. 5, (1986), Springer-Verlag · Zbl 0413.65081
[37] Goll, C.; Rannacher, R.; Wollner, W., The damped Crank-Nicolson time-marching scheme for the adaptive solution of the Black-Scholes equation, J. Comput. Finance, 18, 4, 1-37, (2015)
[38] Grandemont, C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40, 2, 716-737, (2008) · Zbl 1158.74016
[39] Grätsch, T.; Bathe, K.-J., Goal-oriented error estimation in the analysis of fluid flows with structural interactions, Comput. Methods Appl. Mech. Eng., 195, 5673-5684, (2006) · Zbl 1122.76055
[40] Gustafsson, K.; Lundh, M.; Soederlind, G., A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28, 2, 270-287, (1988) · Zbl 0645.65039
[41] Hay, A.; Etienne, S.; Pelletier, D.; Garon, A., Hp-adaptive time integration based on the BDF for viscous flows, J. Comput. Phys., 291, 151-176, (2015) · Zbl 1349.76217
[42] Heywood, J. G.; Rannacher, R., Finite-element approximation of the nonstationary Navier-Stokes problem, part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal., 27, 2, 353-384, (1990) · Zbl 0694.76014
[43] Heywood, J. G.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 22, 325-352, (1996) · Zbl 0863.76016
[44] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253, (1974) · Zbl 0292.76018
[45] Hron, J.; Turek, S., A monolithic FEM/multigrid solver for ALE formulation of fluid structure with application in biomechanics, vol. 53, 146-170, (2006), Springer-Verlag · Zbl 1323.74086
[46] Hron, J.; Turek, S., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, vol. 53, 146-170, (2006), Springer-Verlag
[47] Hughes, T.; Liu, W.; Zimmermann, T., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329-349, (1981) · Zbl 0482.76039
[48] Ignatova, M.; Kukavica, I.; Lasiecka, I.; Tuffaha, A., On well-posedness for a free boundary fluid-structure model, J. Math. Phys., 53, 11, (November 2012)
[49] Jodlbauer, D.; Langer, U.; Wick, T., Parallel block-preconditioned monolithic solvers for fluid-structure interaction problems, (2018)
[50] John, V.; Rang, J., Adaptive time step control for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 199, 9-12, 514-524, (2010) · Zbl 1227.76048
[51] Kay, D. A.; Gresho, P. M.; Griffiths, D. F.; Silvester, D. J., Adaptive time-stepping for incompressible flow, part II: Navier-Stokes equations, SIAM J. Sci. Comput., 32, 1, 111-128, (2010) · Zbl 1410.76293
[52] Kloucek, P.; Rys, F. S., Stability of the fractional step theta-scheme for the nonstationary Navier-Stokes equations, SIAM J. Numer. Anal., 31, 5, 1312-1335, (1994) · Zbl 0810.76036
[53] Kunsich, K.; Vexler, B., Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim., 46, 4, 1368-1397, (2007) · Zbl 1159.35398
[54] Luskin, M.; Rannacher, R., On the soothing property of the Crank-Nicolson scheme, Appl. Anal., 14, 2, 117-135, (1980) · Zbl 0476.65062
[55] Mayr, M.; Kloeppel, T.; Wall, W.; Gee, M., A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors, SIAM J. Sci. Comput., 37, 1, B30-B59, (2015) · Zbl 1330.74159
[56] Meidner, D.; Richter, T., Goal-oriented error estimation for the fractional step theta scheme, Comput. Methods Appl. Math., 14, 2, 203-230, (2014) · Zbl 1284.65135
[57] Meidner, D.; Richter, T., A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 288, 45-59, (2015) · Zbl 1423.76260
[58] Noh, W., A time-dependent two-space-dimensional coupled eulerian-Lagrangian code, (Methods Comput. Phys., vol. 3, (1964), Academic Press New York), 117-179
[59] Okubo, A., Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep-Sea Res. Oceanogr. Abstr., 17, 3, 445-454, (1970)
[60] Rannacher, R., Finite element solution of diffusion problems with irregular data, Numer. Math., 43, 309-327, (1984) · Zbl 0512.65082
[61] R. Rannacher, On the stabilization of the Crank-Nicolson scheme for long time calculations, Preprint, August 1986.
[62] Richter, T., Parallel multigrid method for adaptive finite elements with application to 3D flow problems, (2005), University of Heidelberg, PhD thesis
[63] Richter, T., Goal-oriented error estimation for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 28-42, (2012) · Zbl 1253.74037
[64] Richter, T., A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation, Int. J. Numer. Methods Eng., (2015) · Zbl 1352.76066
[65] Richter, T., Fluid-structure interactions: models, analysis, and finite elements, (2017), Springer · Zbl 1374.76001
[66] Richter, T.; Wick, T., Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Comput. Methods Appl. Mech. Eng., 199, 2633-2642, (2010) · Zbl 1231.74436
[67] Richter, T.; Wick, T., On time discretizations of fluid-structure interactions, (Carraro, T.; Geiger, M.; Körkel, S.; Rannacher, R., Multiple Shooting and Time Domain Decomposition Methods, Contributions in Mathematical and Computational Science, (2015)), 377-400 · Zbl 1382.76195
[68] RoDoBo, A C++ library for optimization with stationary and nonstationary PDEs.
[69] Schäfer, M.; Turek, S., Flow simulation with high-performance computer II, (Benchmark Computations of Laminar Flow Around a Cylinder, Notes on Numerical Fluid Mechanics, vol. 52, (1996), Vieweg Braunschweig Wiesbaden) · Zbl 0874.76070
[70] Schmich, M.; Vexler, B., Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., 30, 1, 369-393, (2008) · Zbl 1169.65098
[71] Temam, R., Navier-Stokes equations, Studies in Mathematics and Its Applications, (1984), Elsevier Science Publishers · Zbl 0572.35083
[72] Tezduyar, T.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput. Methods Appl. Mech. Eng., 94, 339-351, (1992) · Zbl 0745.76044
[73] Tezduyar, T.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Eng., 94, 353-371, (1992) · Zbl 0745.76045
[74] Turek, S., Efficient solvers for incompressible flow problems, (1999), Springer-Verlag
[75] Weiss, J., The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D, 48, 2-3, 273-294, (1991) · Zbl 0716.76025
[76] Wick, T., Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics, (2011), University of Heidelberg, PhD thesis · Zbl 1278.76005
[77] Wick, T., Fluid-structure interactions using different mesh motion techniques, Comput. Struct., 89, 13-14, 1456-1467, (2011)
[78] Wick, T., Goal-oriented mesh adaptivity for fluid-structure interaction with application to heart-valve settings, Arch. Mech. Eng., 59, 6, 73-99, (2012)
[79] Wick, T., Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.II library, Arch. Numer. Softw., 1, 1-19, (2013)
[80] Wick, T., Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53, 1, 29-43, (2014) · Zbl 1309.74026
[81] Zee, K.; Brummelen, E.; Akkerman, I.; Borst, R., Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints, Comput. Methods Appl. Mech. Eng., 200, 2738-2757, (2011) · Zbl 1230.74199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.