×

zbMATH — the first resource for mathematics

Finding equilibrium paths by minimizing external work in dynamic relaxation method. (English) Zbl 1443.74101
Summary: In the common DR technique, a jump occurs after the appearance of the snap-through or snap-back points. As a result, this approach cannot trace the equilibrium path. To cure this drawback, a load factor is employed. In this paper, a new procedure for calculating this factor is suggested. For this purpose, the work increment of the external loads is minimized with respect to the load factor. This factor is only dependent on the fictitious parameters of the DR strategy. To show the robustness of this formulation, it is used in the geometric nonlinear analysis of various structures. Based on the number of iterations, numbers of convergence points and total duration analysis, the different methods are ranked. The obtained results prove the high efficiency of the suggested scheme. In other words, the authors’ technique is accurate and has more rapid convergence rate, in comparison to the similar algorithms.

MSC:
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74G60 Bifurcation and buckling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 529-551 (1979) · Zbl 0408.73040
[2] Bergan, P. G., Solution algorithms for nonlinear structural problems, Comput. Struct., 12, 497-509 (1980) · Zbl 0443.73069
[3] Crisfield, M. A., A fast incremental/iterative solution procedure that handles “snap-through”, Comput. Struct., 13, 55-62 (1981) · Zbl 0479.73031
[4] Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics: (1997), John Wiley & Sons, Inc · Zbl 0890.73001
[5] Bathe, K. J.; Cimento, A. P., Some practical procedures for the solution of nonlinear finite element equations, Comput. Methods Appl. Mech. Eng., 22, 59-85 (1980) · Zbl 0435.73080
[6] Batoz, J.-L.; Dhatt, G., Incremental displacement algorithms for nonlinear problems, Int. J. Numer. Methods Eng., 14, 1262-1267 (1979) · Zbl 0423.73061
[7] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Int. J. Numer. Methods Eng., 14, 1613-1626 (1979) · Zbl 0419.65070
[8] Papadrakakis, M.; Ghionis, P., Conjugate gradient algorithms in nonlinear structural analysis problems, Comput. Methods Appl. Mech. Eng., 59, 11-27 (1986) · Zbl 0595.73097
[9] Pica, A.; Hinton, E., The quasi-Newton BFGS method in the large deflection analysis of plates, Numer. Methods Non-linear Prob., 355-365 (1980)
[10] Ramm, E., Strategies for tracing the nonlinear response near limit points, (Wunderlich, W.; Stein, E.; Bathe, K. J., Nonlinear Finite Element Analysis in Structural Mechanics: (1981), Springer: Springer Berlin Heidelberg), 63-89 · Zbl 0474.73043
[11] Otter, J. R.H.; Day, A. S., Tidal computations, The Engineer, 289, 177-182 (1960)
[12] Underwood, P., Dynamic Relaxation(in Structural Transient Analysis). Computational Methods for Transient Analysis(A 84-29160 12-64), 245-265 (1983), Amsterdam, North-Holland
[13] Brew, J. S.; Brotton, D. M., Nonlinear structural analysis by dynamic relaxation, Int. J. Numer. Methods Eng., 3, 463-483 (1971)
[14] Cassell, A. C.; Hobbs, R. E., Numerical stability of dynamic relaxation analysis of non-linear structures, Int. J. Numer. Methods Eng., 10, 1407-1410 (1976)
[15] Papadrakakis, M., A method for the automatic evaluation of the dynamic relaxation parameters, Comput. Methods Appl. Mech. Eng., 25, 35-48 (1981) · Zbl 0444.73067
[16] Zhang, L. G.; Yu, T. X., Modified adaptive dynamic relaxation method and its application to elastic-plastic bending and wrinkling of circular plates, Comput. Struct, 33, 609-614 (1989) · Zbl 0698.73063
[17] Alamatian, J., A new formulation for fictitious mass of the dynamic relaxation method with kinetic damping, Comput. Struct., 90-91, 42-54 (2012)
[18] Rezaiee-Pajand, M.; Alamatian, J., Nonlinear dynamic analysis by dynamic relaxation method, Struct. Eng. Mech., 28, 549-570 (2008) · Zbl 1257.74173
[19] Rezaiee-Pajand, M.; Alamatian, J., The dynamic relaxation method using new formulation for fictitious mass and damping, Struct. Eng. Mech., 34, 109-133 (2010)
[20] Rezaiee-Pajand, M.; Kadkhodayan, M.; Alamatian, J., Timestep selection for dynamic relaxation method, Mech. Based Des. Struct. Mach., 40, 42-72 (2012)
[21] Rezaiee-Pajand, M.; Kadkhodayan, M.; Alamatian, J.; Zhang, L. C., A new method of fictitious viscous damping determination for the dynamic relaxation method, Comput. Struct., 89, 783-794 (2011)
[22] Rezaiee-Pajand, M.; Sarafrazi, S. R., Nonlinear structural analysis using dynamic relaxation method with improved convergence rate, Int. J. Comput. Methods, 7, 627-654 (2010) · Zbl 1270.74089
[23] Rezaiee-Pajand, M.; Sarafrazi, S. R., Nonlinear dynamic structural analysis using dynamic relaxation with zero damping, Comput. Struct., 89, 1274-1285 (2011)
[24] Rezaiee-Pajand, M.; Taghavian Hakkak, M., Nonlinear analysis of truss structures using dynamic relaxation, Int. J. Eng., 19, 11-22 (2006)
[25] Rezaiee-Pajand, M.; Rezaee, H., Fictitious time step for the kinetic dynamic relaxation method, Mech. Adv. Mater. Struct., 21, 631-644 (2012)
[26] Barnes, M. R., Form-Finding and Analysis of Tension Space Structures by Dynamic Relaxation [Degree of Doctor of Philosophy] (1977), The City University (London) (United Kingdom): The City University (London) (United Kingdom) Ann Arbor
[27] Barnes, M. R., Form-finding and analysis of prestressed nets and membranes, Comput. Struct., 30, 685-695 (1988)
[28] Barnes, M. R., Form and stress engineering of tension structures, Struct. Eng. Rev., 6, 175-202 (1994)
[29] Barnes, M. R., Form finding and analysis of tension structures by dynamic relaxation, Int. J. Space Struct., 14, 89-104 (1999)
[30] Lewis, W. J.; Lewis, T. S., Application of formian and dynamic relaxation to the form-finding of minimal surfaces, J. Int. Assoc. Shell Spatial Struct., 37, 165-186 (1996)
[31] Wood, R. D., A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes, Comput. Struct., 80, 2115-2120 (2002)
[32] Han, S.-E.; Lee, K.-S., A study of the stabilizing process of unstable structures by dynamic relaxation method, Comput. Struct., 81, 1677-1688 (2003)
[33] Hegyi, D.; Sajtos, I.; Geiszter, G.; Hincz, K., Eight-node quadrilateral double-curved surface element for membrane analysis, Comput. Struct., 84, 2151-2158 (2006)
[34] Zhang, L.; Maurin, B.; Motro, R., Form-finding of nonregular tensegrity systems, J. Struct. Eng., 132, 1435-1440 (2006)
[35] Topping, B. H.V.; Ivanyi, P., Computer Aided Design of Cable Membrane Structures (2008), Saxe-Coburg Publications
[36] Bel Hadj Ali, N.; Rhode-Barbarigos, L.; Smith, I. F.C., Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, Int. J. Solids Struct., 48, 637-647 (2011) · Zbl 1236.74191
[37] Barnes, M. R.; Adriaenssens, S.; Krupka, M., A novel torsion/bending element for dynamic relaxation modeling, Comput Struct., 119, 60-67 (2013)
[38] Lee, K.-S.; Huque, Z.; Han, S.-E., Analysis of stabilizing process for stress-erection of Strarch frame, Eng. Struct., 59, 49-67 (2014)
[39] Bagrianski, S.; Halpern, A. B., Form-finding of compressive structures using prescriptive dynamic relaxation, Comput. Struct., 132, 65-74 (2014)
[40] Rushton, K. R., Postbuckling of tapered plates, Int. J. Mech. Sci., 11, 461-480 (1969)
[41] Turvey, G.; Wittrick, W., The large deflection and post-buckling behaviour of some laminated plates, Aeronaut. Q, 24, 77-86 (1973)
[42] Hook, P. M.; Rushton, K. R., Buckling of beams and plates onto an intermediate support studied by the dynamic relaxation method, J. Strain Anal. Eng. Des., 10, 153-158 (1975)
[43] Papadrakakis, M., Post-buckling analysis of spatial structures by vector iteration methods, Comput. Struct., 14, 393-402 (1981) · Zbl 0467.73052
[44] Ramesh, G.; Krishnamoorthy, C. S., Post-buckling analysis of structures by dynamic relaxation, Int. J. Numer. Methods Eng, 36, 1339-1364 (1993) · Zbl 0775.73344
[45] Papadrakakis, M., Inelastic post‐buckling analysis of trusses, J. Struct. Eng., 109, 2129-2147 (1983)
[46] Ramesh, G.; Krishnamoorthy, C. S., Inelastic post-buckling analysis of truss structures by dynamic relaxation method, Int. J. Numer. Methods Eng., 37, 3633-3657 (1994) · Zbl 0814.73063
[47] Siddiquee, M. S.A.; Tanaka, T.; Tatsuoka, F., Tracing the equilibrium path by dynamic relaxation in materially nonlinear problems, Int. J. Numer. Anal. Methods Geomech., 19, 749-767 (1995) · Zbl 0835.73057
[48] Ramesh, G.; Krishnamoorthy, C. S., Geometrically non-linear analysis of plates and shallow shells by dynamic relaxation, Comput. Meth. Appl. Mech. Eng., 123, 15-32 (1995)
[49] Kadkhodayan, M.; Zhang, L. C.; Sowerby, R., Analyses of wrinkling and buckling of elastic plates by DXDR method, Comput. Struct., 65, 561-574 (1997) · Zbl 0936.74527
[50] Zhang, W.; Hisada, T.; Noguchi, H., Post-buckling analysis of shell and membrane structures by dynamic relaxation method, Comput. Mech., 26, 267-272 (2000) · Zbl 0988.74071
[51] Lee, K. S.; Han, S. E.; Park, T., A simple explicit arc-length method using the dynamic relaxation method with kinetic damping, Comput. Struct., 89, 216-233 (2011)
[52] Rezaiee-Pajand, M.; Alamatian, J., Automatic DR structural analysis of snap-through and snap-back using optimized load increments, J. Struct. Eng, 137, 109-116 (2011)
[53] Alamatian, J., Displacement-based methods for calculating the buckling load and tracing the post-buckling regions with dynamic relaxation method, Comput. Struct., 114-115, 84-97 (2013)
[54] Lee, K.-S.; Han, S.-E.; Hong, J.-W., Post-buckling analysis of space frames using concept of hybrid arc-length methods, Int. J. Non Linear Mech., 58, 76-88 (2014)
[55] Wood, R. D.; Zienkiewicz, O., Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Comput. Struct., 7, 725-735 (1977) · Zbl 0372.73062
[56] Williams, F., An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections, Q. J. Mech. Appl. Math., 17, 451-469 (1964) · Zbl 0129.18803
[57] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 1551-1569 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.