Balibrea, F.; Esquembre, F.; Mondéjar, F. Simple triangular maps of the unit square. (English) Zbl 0906.39010 Grazer Math. Ber. 334, 243-246 (1997). Summary: We study triangular maps of the unit square into itself trying to classify simple maps according to their topological behaviour. We give some results for the class of maps which verify that the set of periodic points \(\text{Per} (f)\) is closed, where \(f\) is the base map. We conjecture possible generalizations of these results. MSC: 39B12 Iteration theory, iterative and composite equations Keywords:triangular maps; simple maps; set of periodic points PDF BibTeX XML Cite \textit{F. Balibrea} et al., Grazer Math. Ber. 334, 243--246 (1997; Zbl 0906.39010)