×

The differential transform method and Padé approximants for a fractional population growth model. (English) Zbl 1356.92073

Summary: Purpose. The purpose of this paper is to propose an approximate method for solving a fractional population growth model in a closed system. The fractional derivatives are described in the Caputo sense.
Design/methodology/approach. The approach is based on the differential transform method. The solutions of a fractional model equation are calculated in the form of convergent series with easily computable components.
Findings. The diagonal Padé approximants are effectively used in the analysis to capture the essential behavior of the solution.
Originality/value. Illustrative examples are included to demonstrate the validity and applicability of the technique.

MSC:

92D25 Population dynamics (general)
65L99 Numerical methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Khaled, K. (2005), ”Numerical approximations for population growth models”, Appl. Math. Comput., Vol. 160, pp. 865-73. , · Zbl 1062.65142 · doi:10.1108/09615531211244925
[2] Arikoğlu, A. and Özkol, I. (2007), ”Solution of fractional differential equations by using differential transform method”, Chaos, Solitons & Fractals, Vol. 34 No. 5, pp. 1473-81. , · Zbl 1152.34306 · doi:10.1108/09615531211244925
[3] Bagley, R.L. and Torvik, P.J. (1984), ”On the appearance of the fractional derivative in the behavior of real materials”, J. Appl. Mech., Vol. 51, pp. 294-8. , · Zbl 1203.74022 · doi:10.1108/09615531211244925
[4] Baker, G.A. (1975), Essentials of Padé Approximants, Academic Press, London.
[5] Boyd, J. (1997), ”Padé approximants algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain”, Comput. Phys., Vol. 11 No. 3, pp. 299-303. · Zbl 1356.92073 · doi:10.1108/09615531211244925
[6] Burden, R.L. and Faires, J.D. (1993), Numerical Analysis, PWS, Boston, MA.
[7] Caputo, M. (1967), ”Linear models of dissipation whose Q is almost frequency independent, Part II”, J. Roy. Austral. Soc., Vol. 13, pp. 529-39. , · Zbl 1356.92073 · doi:10.1108/09615531211244925
[8] Diethelm, K., Ford, J.M., Ford, N.J. and Weilbeer, W. (2006), ”Pitfalls in fast numerical solvers for fractional differential equations”, J. Comput. Appl. Math., Vol. 186, pp. 482-503. , · Zbl 1078.65550 · doi:10.1108/09615531211244925
[9] Liao, S.J. (1999), ”An explicit totally analytic approximation of Blasius viscous flow problems”, Int. J. Non-Linear Mech., Vol. 34 No. 4, p. 759. , · Zbl 1342.74180 · doi:10.1108/09615531211244925
[10] Liao, S.J. (2003), Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall, Boca Raton, FL.
[11] Liao, S.J. (2004), ”On the homotopy analysis method for nonlinear problems”, Appl. Math. Comput., Vol. 147, p. 499. , · Zbl 1086.35005 · doi:10.1108/09615531211244925
[12] Ma, W.X. and Fuchssteiner, B. (1996), ”Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation”, International Journal of Non-Linear Mechanics, Vol. 31, pp. 329-38. , · Zbl 0863.35106 · doi:10.1108/09615531211244925
[13] Ma, W.X. and Lee, J.-H. (2009), ”A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation”, Chaos, Solitons & Fractals, Vol. 42, pp. 1356-63. , · Zbl 1198.35231 · doi:10.1108/09615531211244925
[14] Ma, W.X. and You, Y. (2005), ”Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions”, Transactions of the American Mathematical Society, Vol. 357, pp. 1753-78. , · Zbl 1062.37077 · doi:10.1108/09615531211244925
[15] Mainardi, F. (1997), ”Fractional calculus: ’some basic problems in continuum and statistical mechanics”’, in Carpinteri, A. and Mainardi, F. (Eds), Fractals and Fractional Calculus in Continuum Mechanics, Springer, NewYork, NY, pp. 291-348. · Zbl 0917.73004
[16] Momani, S. and Qaralleh, R. (2007), ”Numerical approximations and Padé approximants for a fractional population growth model”, Applied Mathematical Modelling, Vol. 31 No. 9, pp. 1907-14. , · Zbl 1167.45300 · doi:10.1108/09615531211244925
[17] Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego, CA. · Zbl 0924.34008
[18] Scudo, F.M. (1971), ”Vito Volterra and theoretical ecology”, Theor. Populat. Biol., Vol. 2, pp. 1-23. · Zbl 0241.92001 · doi:10.1108/09615531211244925
[19] Small, R.D. (1989), ”Population growth in a closed model”, Mathematical Modelling: Classroom Notes in Applied Mathematics, SIAM, Philadelphia, PA.
[20] Small, R.D. (1997), ”Population growth in a closed model, Mathematical Modelling: Classroom Notes in Applied Mathematics”, SIAM Rev., Vol. 39 No. 3, pp. 484-93 (SIAM, Philadelphia, PA, 1989). , · Zbl 1356.92073 · doi:10.1108/09615531211244925
[21] Suarez, L.E. and Shokooh, A. (1997), ”An eigenvector expansion method for the solution of motion containing fractional derivatives”, ASME J. Appl. Mech., Vol. 64, pp. 629-35. , · Zbl 0905.73022 · doi:10.1108/09615531211244925
[22] TeBeest, K.G. (1997), ”Numerical and analytical solutions of Volterra’s population model”, SIAM Rev., Vol. 39 No. 3, pp. 484-93. , · Zbl 0892.92020 · doi:10.1108/09615531211244925
[23] Wazwaz, A. (1999), ”Analytical approximations and Padé approximations for Volterra’s population model”, Appl. Math. Comput., Vol. 100, pp. 13-25. , · Zbl 0953.92026 · doi:10.1108/09615531211244925
[24] Zhou, J.K. (1986), Differential Transform and Its Applications for Electrical Circuits (in Chinese), Huazhong University Press, Wuhan.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.