zbMATH — the first resource for mathematics

On the error term in the approximate functional equation for exponential sums related to cusp forms. (English) Zbl 1251.11025

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11L07 Estimates on exponential sums
Full Text: DOI
[1] Ernvall-Hytönen A.-M., Int. Math. Res. Not. 2008 pp 44–
[2] Jutila M., J. Reine Angew. Math. 355 pp 173–
[3] Jutila M., Tata Institute of Fundamental Research Lectures on Mathematics and Physics 80, in: Lectures on a Method in the Theory of Exponential Sums (1987)
[4] DOI: 10.1007/BF02837820 · Zbl 0658.10043 · doi:10.1007/BF02837820
[5] DOI: 10.1007/BF02588051 · Zbl 1098.11034 · doi:10.1007/BF02588051
[6] Lebedev N. N., Special Functions and Their Applications (1972) · Zbl 0271.33001
[7] DOI: 10.1017/S0305004100021101 · doi:10.1017/S0305004100021101
[8] Titchmarsh E. C., The Theory of the Riemann Zeta-Function (1951) · Zbl 0042.07901
[9] Wilton J. R., J. Reine Angew. Math. 169 pp 219–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.