zbMATH — the first resource for mathematics

On Mahler’s transcendence measure for \(e\). (English) Zbl 1435.11095
Given a transcendental number \(\xi\) one can define a transcendence measure \(w(m,H)\) by the infinum of numbers \(r>0\) such that \[ |\lambda_0+\lambda_1\xi+\dots+\lambda_m\xi^{m}|>H^{-r} \] for all integers \(\lambda_i\) with \(|\lambda_i|\leq H\) and with \(i=1,\dots,m\). In the case of \(\xi=e\) the authors provide explicit upper bounds for \(w(m,H)\) provided that \(H\) is sufficiently large. These results improve earlier results due to M. Hata [J. Number Theory 54, No. 1, 81–92 (1995; Zbl 0839.11027)].

11J82 Measures of irrationality and of transcendence
11J72 Irrationality; linear independence over a field
41A21 Padé approximation
OEIS; SageMath
Full Text: DOI
[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National Bureau Of Standards Applied Mathematics Series, vol. 55. Washington, DC (1964) · Zbl 0171.38503
[2] Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1975) · Zbl 0297.10013
[3] Borel, É, Sur la nature arithmétique du nombre \(e\), C. R. Acad. Sci. Paris, 128, 596-599, (1899) · JFM 30.0384.03
[4] Fel’dman, N.I., Nesterenko, Y.V.: Transcendental numbers, number theory IV, 1-345. In: Encyclopaedia of Mathematical Sciences, vol. 44. Springer, Berlin (1998)
[5] Hančl, J.; Leinonen, M.; Leppälä, K.; Matala-aho, T., Explicit irrationality measures for continued fractions, J. Number Theory, 132, 1758-1769, (2012) · Zbl 1276.11124
[6] Hata, M., Remarks on Mahler’s transcendence measure for \(e\), J. Number Theory, 54, 81-92, (1995) · Zbl 0839.11027
[7] Hermite, C.: Sur la fonction exponentielle, C. R. Acad. Sci. 77:18-24, 74-79, 226-233, 285-293 (1873) · JFM 05.0248.01
[8] Khassa, DS; Srinivasan, S., A transcendence measure for \(e\), J. Indian Math. Soc., 56, 145-152, (1991) · Zbl 0881.11061
[9] Leppälä, K.; Matala-aho, T.; Törmä, T., Rational approximations of the exponential function at rational points, J. Number Theory, 179, 220-239, (2017) · Zbl 1418.11110
[10] Mahler, K., Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I, J. Reine Angew. Math., 166, 118-136, (1931) · JFM 57.0242.03
[11] Mahler, K.: Lectures on Transcendental Numbers. Springer, Berlin (1976) · Zbl 0332.10019
[12] Popken, J., Sur la nature arithmétique du nombre \(e\), C. R. Acad. Sci. Paris, 186, 1505-1507, (1928) · JFM 54.0214.02
[13] Popken, J., Zur Transzendenz von \(e\), Math. Z., 29, 525-541, (1929) · JFM 55.0117.01
[14] SageMath, the Sage Mathematics Software System (Version 6.5): The Sage Developers (2015). http://www.sagemath.org
[15] Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org/. Accessed 4 Jan 2017 · Zbl 1044.11108
[16] Waldschmidt, M.: Introduction to Diophantine methods: irrationality and transcendence (2014). https://webusers.imj-prg.fr/ michel.waldschmidt/articles/pdf/IntroductionDiophantineMethods.pdf. Accessed 11 Jan 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.