×

An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics. (English) Zbl 1440.65274

Summary: We propose a new explicit pseudo-energy and momentum conserving scheme for the time integration of Hamiltonian systems. The scheme, which is formally second-order accurate, is based on two key ideas: the integration during the time-steps of forces between free-flight particles and the use of momentum jumps at the discrete time nodes leading to a two-step formulation for the acceleration. The pseudo-energy conservation is established under exact force integration, whereas it is valid to second-order accuracy in the presence of quadrature errors. Moreover, we devise an asynchronous version of the scheme that can be used in the framework of slow-fast time-stepping strategies. The scheme is validated against classical benchmarks and on nonlinear or inhomogeneous wave propagation problems.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
70H05 Hamilton’s equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chabassier, J.; Joly, P., Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string, Comput. Methods Appl. Mech. Engrg., 199, 45, 2779-2795 (2010) · Zbl 1231.74146
[2] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Engrg., 195, 37, 4890-4916 (2006) · Zbl 1177.74379
[3] Fetecau, R. C.; Marsden, J. E.; Ortiz, M.; West, M., Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM J. Appl. Dyn. Syst., 2, 3, 381-416 (2003) · Zbl 1088.37045
[4] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Volume 31 (2006), Springer · Zbl 1094.65125
[5] Calvo, M. P.; Sanz-Serna, J. M., The development of variable-step symplectic integrators, with application to the two-body problem, SIAM J. Sci. Comput., 14, 936-952 (1993) · Zbl 0785.65083
[6] Hairer, E., Variable time step integration with symplectic methods, Appl. Numer. Math., 25, 2-3, 219-227 (1997) · Zbl 0884.65073
[7] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[8] Hughes, T. J.R.; Liu, W. K.; Caughy, P., Transient finite element formulations that preserve energy, J. Appl. Mech., 45, 366-370 (1978) · Zbl 0392.73075
[9] Iserles, A.; Munthe-Kaas, H. Z.; Nørsett, S. P.; Zanna, A., Lie-group methods, Acta Numer., 9, 215-365 (2000) · Zbl 1064.65147
[10] Simo, J.; Oliver, J., A new approach to the analysis and simulation of strain softening in solids, Fracture Damage Quasibrittle Struct., 25-39 (1994)
[11] Gonzalez, O.; Simo, J. C., On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Engrg., 134, 3-4, 197-222 (1996) · Zbl 0900.70013
[12] Chabassier, J.; Imperiale, S., Introduction and study of fourth order theta schemes for linear wave equations, J. Comput. Appl. Math., 245, 194-212 (2013) · Zbl 1262.65119
[13] Kane, C.; Marsden, J. E.; Ortiz, M., Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40, 7, 3353-3371 (1999) · Zbl 0983.70014
[14] Groß, M.; Betsch, P.; Steinmann, P., Conservation properties of a time FE method. part IV: Higher order energy and momentum conserving schemes, Internat. J. Numer. Methods Engrg., 63, 13, 1849-1897 (2005) · Zbl 1134.74406
[15] Mariotti, C., A new leapfrog scheme for rotational motion in 3d, Internat. J. Numer. Methods Engrg., 107, 4, 273-289 (2016) · Zbl 1352.70008
[16] Quispel, G. R.W.; McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41, 4, 045206 (2008) · Zbl 1132.65065
[17] Hairer, E., Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5, 73-84 (2010) · Zbl 1432.65185
[18] Diaz, J.; Grote, M. J., Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31, 3, 1985-2014 (2009) · Zbl 1195.65131
[19] Fong, W.; Darve, E.; Lew, A., Stability of asynchronous variational integrators, J. Comput. Phys., 227, 18, 8367-8394 (2008) · Zbl 1153.65120
[20] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems, Internat. J. Numer. Methods Engrg., 49, 10, 1295-1325 (2000) · Zbl 0969.70004
[21] Leyendecker, S.; Marsden, J. E.; Ortiz, M., Variational integrators for constrained dynamical systems, ZAMM - Z. Angew. Math. Mech., 88, 9, 677-708 (2008) · Zbl 1153.70004
[22] Kane, C.; Repetto, E. A.; Ortiz, M.; Marsden, J. E., Finite element analysis of nonsmooth contact, Comput. Methods Appl. Mech. Engrg., 180, 1, 1-26 (1999) · Zbl 0963.74061
[23] Wohlmuth, B., Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569-734 (2011) · Zbl 1432.74176
[24] Krysl, P.; Endres, L., Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies, Internat. J. Numer. Methods Engrg., 62, 15, 2154-2177 (2005) · Zbl 1118.70300
[25] Salomon, J.; Weiss, A. A.; Wohlmuth, B., Energy-conserving algorithms for a corotational formulation, SIAM J. Numer. Anal., 46, 4, 1842-1866 (2008) · Zbl 1227.74105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.