×

Hybrid discretization methods with adaptive yield surface detection for Bingham pipe flows. (English) Zbl 1407.65141

Summary: We devise a hybrid low-order method for Bingham pipe flows, where the velocity is discretized by means of one unknown per mesh face and one unknown per mesh cell which can be eliminated locally by static condensation. The main advantages are local conservativity and the possibility to use polygonal/polyhedral meshes. We exploit this feature in the context of adaptive mesh refinement to capture the yield surface by means of local mesh refinement and possible coarsening. We consider the augmented Lagrangian method to solve iteratively the variational inequalities resulting from the discrete Bingham problem, using piecewise constant fields for the auxiliary variable and the associated Lagrange multiplier. Numerical results are presented in pipes with circular and eccentric annulus cross-section for different Bingham numbers.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Balmforth, NJ; Frignard, IA; Ovarlez, G., Yielding to stress: recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech., 46, 121-146, (2016) · doi:10.1146/annurev-fluid-010313-141424
[2] Bartels, S., Milicevic, M.: Alternating direction method of multipliers with variable step sizes. Available: https://aam.uni-freiburg.de/agba/prof/preprints/BarMil17-pre.pdf (2017). Accessed Jan 2018
[3] Bassi, F.; Botti, L.; Colombo, A.; Pietro, DA; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231, 45-65, (2012) · Zbl 1457.65178 · doi:10.1016/j.jcp.2011.08.018
[4] Bassi, F.; Botti, L.; Colombo, A.; Rebay, S., Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, Comput. Fluids, 61, 77-85, (2012) · Zbl 1365.76109 · doi:10.1016/j.compfluid.2011.11.002
[5] Bercovier, M.; Engelman, M., A finite element method for incompressible non-Newtonian flows, J. Comput. Phys., 36, 313-326, (1980) · Zbl 0457.76005 · doi:10.1016/0021-9991(80)90163-1
[6] Bingham, E.C.: Fluidity and Platicity. McGraw-Hill, New York (1922)
[7] Bleyer, J., Advances in the simulation of viscoplastic fluid flows using interior-point methods, Comput. Methods Appl. Mech. Eng., 330, 368-394, (2018) · doi:10.1016/j.cma.2017.11.006
[8] Bleyer, J.; Maillard, M.; Buhan, P.; Coussot, P., Efficient numerical computations of yield stress fluid flows using second-order cone programming, Comput. Methods Appl. Mech. Eng., 283, 599-614, (2015) · Zbl 1423.76031 · doi:10.1016/j.cma.2014.10.008
[9] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 1872-1896, (2005) · Zbl 1108.65102 · doi:10.1137/040613950
[10] Cangiani, A.; Georgoulis, EH; Houston, P., \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24, 2009-2041, (2014) · Zbl 1298.65167 · doi:10.1142/S0218202514500146
[11] Cicuttin, M.; Pietro, DA; Ern, A., Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming, J. Comput. Appl. Math., (2017) · Zbl 1471.74076 · doi:10.1016/j.cam.2017.09.017
[12] Cockburn, B.; Pietro, DA; Ern, A., Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal., 50, 635-650, (2016) · Zbl 1341.65045 · doi:10.1051/m2an/2015051
[13] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365, (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[14] Cockburn, B.; Shi, K., Devising HDG methods for Stokes flow: an overview, Comput. Fluids, 98, 221-229, (2014) · Zbl 1391.76315 · doi:10.1016/j.compfluid.2013.11.017
[15] Coussot, P., Bingham’s heritage, Rheol. Acta, 6, 163-176, (2016)
[16] Dean, EJ; Glowinski, R.; Guidoboni, G., On the numerical simulation of Bingham visco-plastic flow: old and new results, J. Non-Newton. Fluid Mech., 142, 36-62, (2007) · Zbl 1107.76061 · doi:10.1016/j.jnnfm.2006.09.002
[17] Pietro, DA; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., 283, 1-21, (2015) · Zbl 1423.74876 · doi:10.1016/j.cma.2014.09.009
[18] Pietro, DA; Ern, A.; Lemaire, S., An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., 14, 461-472, (2014) · Zbl 1304.65248 · doi:10.1515/cmam-2014-0018
[19] Pietro, DA; Ern, A.; Linke, A.; Schieweck, F., A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Eng., 306, 175-195, (2016) · doi:10.1016/j.cma.2016.03.033
[20] Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 265-295, (2010) · Zbl 1191.65142 · doi:10.1142/S0218202510004222
[21] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976). Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219 · Zbl 0508.73001 · doi:10.1007/978-3-642-66165-5
[22] Ern, A.; Vohralík, M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53, 1058-1081, (2015) · Zbl 1312.76026 · doi:10.1137/130950100
[23] Eymard, R.; Gallouët, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30, 1009-1043, (2010) · Zbl 1202.65144 · doi:10.1093/imanum/drn084
[24] Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Volume 15 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1983). Translated from the French by B. Hunt and D. C. Spicer, Applications to the Numerical Solution of Boundary Value Problems · Zbl 0525.65045
[25] Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Volume 1749 of Lecture Notes in Mathematics. Springer, Berlin (2000) · Zbl 0964.76003 · doi:10.1007/BFb0103751
[26] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Comput. Math. Appl., 2, 17-40, (1976) · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[27] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York (1984) · doi:10.1007/978-3-662-12613-4
[28] Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics, Volume 9 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989) · Zbl 0698.73001 · doi:10.1137/1.9781611970838
[29] Glowinski, Roland; Lions, Jacques-Louis; Trémolières, Raymond, Introduction, v-xv, (1981) · doi:10.1016/S0168-2024(08)70201-7
[30] Glowinski, R.; Marrocco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér, 9, 41-76, (1975) · Zbl 0368.65053
[31] He, B.; Yuan, X., On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., 130, 567-577, (2015) · Zbl 1320.90060 · doi:10.1007/s00211-014-0673-6
[32] Hestenes, MR, Multiplier and gradient methods, J. Optimi. Theory Appl., 4, 303-320, (1969) · Zbl 0174.20705 · doi:10.1007/BF00927673
[33] Latché, J-C; Vola, D., Analysis of the Brezzi-Pitkäranta stabilized Galerkin scheme for creeping flows of Bingham fluids, SIAM J. Numer. Anal., 42, 1208-1225, (2004) · Zbl 1159.76350 · doi:10.1137/S0036142903424386
[34] Mosolov, PP; Miasnikov, VP, Variational methods in the theory of the fluidity of a viscous-plastic medium, J. Appl. Math. Mech., 29, 545-577, (1965) · Zbl 0168.45505 · doi:10.1016/0021-8928(65)90063-8
[35] Mosolov, PP; Miasnikov, VP, On stagnant flow regions of a viscous-plastic medium in pipes, J. Appl. Math. Mech., 30, 841-854, (1966) · Zbl 0168.45601 · doi:10.1016/0021-8928(66)90035-9
[36] Mosolov, PP; Miasnikov, VP, On qualitative singularities of the flow of a viscoplastic medium in pipes, J. Appl. Math. Mech., 31, 609-613, (1967) · Zbl 0236.76006 · doi:10.1016/0021-8928(67)90055-X
[37] Nguyen, NC; Peraire, J.; Cockburn, B., A hybridizable discontinuous Galerkin methods for Stokes flow, Comput. Methods Appl. Mech. Eng., 199, 582-597, (2010) · Zbl 1227.76036 · doi:10.1016/j.cma.2009.10.007
[38] Oldroyd, JG, A rational formulation of the equations of plastic flow for a Bingham solid, Proc. Cambr. Philos. Soc., 43, 100-105, (1947) · Zbl 0029.32702 · doi:10.1017/S0305004100023239
[39] Papanastasiou, TC, Flows of materials with yield, J. Rheol., 31, 385-404, (1987) · Zbl 0666.76022 · doi:10.1122/1.549926
[40] Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Symposium of Optimization, University Keele, Keele, 1968, pp. 283-298. Academic Press, London (1969)
[41] Roquet, N.; Saramito, P., An adaptive finite element method for Bingham fluid flows around a cylinder, Comput. Methods Appl. Mech. Eng., 192, 3317-3341, (2003) · Zbl 1054.76053 · doi:10.1016/S0045-7825(03)00262-7
[42] Saramito, P.; Roquet, N., An adaptive finite element method for viscoplastic fluid flows in pipes, Comput. Methods Appl. Mech. Eng., 190, 5391-5412, (2001) · Zbl 1002.76071 · doi:10.1016/S0045-7825(01)00175-X
[43] Saramito, P.; Wachs, A., Progress in numerical simulation of yield stress fluid flows, Rheol. Acta, 56, 211-230, (2017) · doi:10.1007/s00397-016-0985-9
[44] Szabo, P.; Hassager, O., Flow of viscoplastic fluids in eccentric annular geometries, J. Non-Newton. Fluid Mech., 45, 149-169, (1992) · Zbl 0762.76008 · doi:10.1016/0377-0257(92)85001-D
[45] Treskatis, T.; Moyers-González, MA; Price, CJ, An accelerated dual proximal gradient method for applications in viscoplasticity, J. Non-Newton. Fluid Mech., 238, 115-130, (2016) · doi:10.1016/j.jnnfm.2016.09.004
[46] Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013) · doi:10.1093/acprof:oso/9780199679423.001.0001
[47] Wachs, A., Numerical simulaiton of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods, J. Non-Newton. Fluid Mech., 142, 183-198, (2007) · Zbl 1143.76350 · doi:10.1016/j.jnnfm.2006.08.009
[48] Wang, Y., Tracking of the yield surfaces of laminar viscoplastic flows in noncircular ducts using an adaptive scheme, Proc. Nat. Sci. Counc. ROC(A), 23, 311-318, (1999)
[49] Zhang, J., An augmented Lagrangian approach to simulating yield stress fluid flows around a spherical gas bubble, Int. J. Numer. Methods Fluids, 69, 731-746, (2012) · doi:10.1002/fld.2609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.