×

A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses. (English) Zbl 1402.74026

Summary: We propose a mathematical model for relaxation modulus and its numerical solution. The model formula is extended from sigmoidal function considering nonlinear strain hardening. Its physical meaning can be interpreted by a macroscale elastic network-viscous medium model with only five model parameters in a simpler format than the molecular-chain-based polymer models to represent general solid materials. We also developed a finite-element (FE) framework and robust numerical algorithm to implement this model for simulating responses under both static and dynamic loadings. We validated the model through both experimental data and numerical simulations on a variety of materials including asphalt concrete, polymer, spider silk, hydrogel, agar and bone. By satisfying the second law of thermodynamics in the form of Clausius-Duhem inequality, the model is able to simulate creep and sinusoidal deformation as well as energy dissipation. Compared to the Prony series, the widely used model with a large number of model parameters, the proposed model has improved accuracy in fitting experimental data and prediction stability outside of the experimental range with competitive numerical stability and computation speed. We also present simulation results of nonlinear stress-strain relationships of spider silk and hydrogels, and dynamic responses of a multilayer structure.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Flory, P., Principles of polymer chemistry, (1953), Cornell University Press
[2] McCrum, N.; Williams, B.; Read, G., An elastic and dielectric effects in polymer solids, (1991), Dover
[3] Likhtman, AE; Sukumaran, SK; Ramirez, J., Linear viscoelasticity from molecular dynamics simulation of entangled polymers, Macromolecules, 40, 6748-6757, (2007) · doi:10.1021/ma070843b
[4] Kremer, K.; Grest, GSJ, Dynamics of entangled linear polymer melts: a molecular-dynamics simulation, J. Chem. Phys., 92, 5057-5086, (1990) · doi:10.1063/1.458541
[5] de Gennes, PG, Reptation of a polymer chain in presence of fixed obstacles, J. Chem. Phys., 55, 572, (1971) · doi:10.1063/1.1675789
[6] McLeish, TCB, Tube theory of entangled polymer dynamics, Adv. Phys., 51, 1379-1527, (2010)
[7] Pokrovskii, VN, Reptation and diffusive modes of motion of linear macromolecules, J. Exp. Theor. Phys., 106, 604-607, (2008) · doi:10.1134/S1063776108030205
[8] de Gennes, PG, Brownian motions of flexible polymer chains, Nature, 282, 367-370, (1979) · doi:10.1038/282367a0
[9] Roylance, D., Engineering viscoelasticity, (2001), Massachusetts Institute of Technology
[10] Chen, X.; Ashcroft, IA; Wildman, RD; Tuck, CJ, An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials, Proc. R. Soc. A, 471, 20150477, (2015) · doi:10.1098/rspa.2015.0477
[11] Xu, Q.; Zhou, Q.; Medina, C.; Chang, GK; Rozycki, DK, Experimental and numerical analysis of a waterproofing adhesive layer used on concrete-bridge decks, Int. J. Adhes. Adhes., 29, 525-534, (2009) · doi:10.1016/j.ijadhadh.2008.12.001
[12] Koontz, E.; Blouin, V.; Wachtel, P.; Musgraves, JD; Richardson, K., Prony series spectra of structural relaxation in N-BK7 for finite element modeling, J. Phys. Chem. A, 116, 12 198-12 205, (2012) · doi:10.1021/jp307717q
[13] Jänicke, R.; Larsson, F.; Runesson, K.; Steeb, H., Numerical identification of a viscoelastic substitute model for heterogeneous poroelastic media by a reduced order homogenization approach, Comput. Methods Appl. Mechan. Eng., 298, 108-120, (2016) · doi:10.1016/j.cma.2015.09.024
[14] Xu, Q., Development of a computational method for inverting dynamic moduli of multilayer systems with applications to flexible pavements, (2014), University of Texas at Austin
[15] Provenzano, PP; Lakes, RS; Corr, DT; Vanderby, R., Application of nonlinear viscoelastic models to describe ligament behavior, Biomech. Model. Mechanobiol., 1, 45-57, (2002) · doi:10.1007/s10237-002-0004-1
[16] Xu, F.; Lu, TJ; Seffen, KA, Biothermomechanics of skin tissues, J. Mech. Phys. Solids, 56, 1852-1884, (2008) · Zbl 1162.74406 · doi:10.1016/j.jmps.2007.11.011
[17] Slanik, ML; Nemes, JA; Potvin, MJ; Piedboeuf, JC, Time domain finite element simulations of damped multilayered beams using a PS representation, Mechan. Time-Depend. Mater., 4, 211-230, (2000) · doi:10.1023/A:1009826923983
[18] Huang, X.; Zhou, S.; Sun, G.; Li, G.; Xie, Y., Topology optimization for microstructures of viscoelastic composite materials, Comput, Methods Appl. Mechan. Engin., 283, 503-516, (2015) · Zbl 1423.74748 · doi:10.1016/j.cma.2014.10.007
[19] Iyo, T.; Maki, Y.; Sasaki, N.; Nakata, M., Anisotropic viscoelastic properties of cortical bone, J. Biomech., 37, 1433-1437, (2004) · doi:10.1016/j.jbiomech.2003.12.023
[20] Bagley, RL; Torvik, PJ, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol. 27,, 3, 201-210, (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[21] Pritz, T., Five-parameter fractional derivative model for polymeric damping materials, J. Sound Vib., 265, 935-952, (2003) · doi:10.1016/S0022-460X(02)01530-4
[22] Pronk, AC, Revival of the Huet-Sayegh response model-notes on the Huet & Sayegh rheological model. \(DWW-2003-29\)., (2003)
[23] Xu, Q.; Solaimanian, M., Modeling linear viscoelastic properties of asphalt concrete by the Huet-Sayegh model, Int. J. Pavement Eng., 10, 401-422, (2009) · doi:10.1080/10298430802524784
[24] Kim, S., Viscoelastic behaviors in polymeric nanodroplet collisions, Phys. Rev. E, 83, 041302, (2011) · doi:10.1103/PhysRevE.83.041302
[25] Schapery, RA, On the characterization of non-linear viscoelastic materials, Polym. Eng. Sci., 9, 295-310, (1969) · doi:10.1002/pen.760090410
[26] Monsia, MD, A simplified nonlinear generalized Maxwell model for predicting the time dependent behavior of viscoelastic materials, World J. Mech., 1, 158-167, (2011) · doi:10.4236/wjm.2011.13021
[27] Chung, CW; Buist, ML, A novel nonlinear viscoelastic solid model, Nonlinear Analysis: Real World Applications., 13, 1480-1488, (2012) · Zbl 1239.74017 · doi:10.1016/j.nonrwa.2011.11.011
[28] Haj-Ali, RM; Muliana, AH, Numerical finite element formulation of the Schapery non-linear viscoelastic material model, Int. J. Numer. Methods Eng., 59, 25-45, (2004) · Zbl 1047.74061 · doi:10.1002/nme.861
[29] Park, SW; Kim, YR, Fitting Prony-series viscoelastic models with power-law presmoothing, J. Mater. Civ. Eng., 13, 26-32, (2001) · doi:10.1061/(ASCE)0899-1561(2001)13:1(26)
[30] Al-Qadi, I.; Yoo, P.; Elseifi, M.; Nelson, S., Creep behavior of hot-mix asphalt due to heavy vehicular tire loading, J. Eng. Mech., 135, 1265-1273, (2009) · doi:10.1061/(ASCE)0733-9399(2009)135:11(1265)
[31] Xu, Q.; Prozzi, JA, Static versus viscoelastic wave propagation approach for simulating loading effects on pavement structures, Constr. Build. Mater., 53, 584-595, (2014) · doi:10.1016/j.conbuildmat.2013.12.017
[32] Koval’chenko, MS, Dynamics of uniaxial tension of a viscoelastic strain-hardening body in a system with one degree of freedom. Part 3. Hydraulic loading of the system, Strength Mater., 32, 27-40, (2000) · doi:10.1007/BF02511505
[33] Xu, Q.; Engquist, B., A mathematical and physical model improves accuracy in simulating solid material relaxation modulus and viscoelastic responses, (2016)
[34] Nutting, PG, A general stress-strain-time formula, J. Franklin Inst., 235, 513-524, (1943) · doi:10.1016/S0016-0032(43)91483-8
[35] Metzler, R.; Klafter, J., From stretched exponential to inverse power-law: fractional dynamics, Cole-Cole relaxation processes, and beyond, J. Non-Cryst. Solids, 305, 81-87, (2002) · doi:10.1016/S0022-3093(02)01124-9
[36] Design Guide Draft - 2.4 Modulus of Elasticity for Major Material Groups, (2002)
[37] Pellinen, TK; Witczak, MW, Stress dependent master curve construction for dynamic (complex) modulus, J. Assoc. Asphalt Paving Technol., 71, 281-309, (2002)
[38] Sahni, V.; Blackledge, TA; Dhinojwala, A., Viscoelastic solids explain spider web stickiness, Nat. Commun., 1, 19, (2010) · doi:10.1038/ncomms1019
[39] Abboud, A.; Nassar, SA, Viscoelastic strain hardening model for gasket creep relaxation, J. Pressure Vessel Technol., 135, 1-9, (2013) · doi:10.1115/1.4023501
[40] Lane, JMD, Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics, Phys. Rev. E, 92, 012320, (2015) · doi:10.1103/PhysRevE.92.012320
[41] Williams, ML; Landel, RF; Ferry, JD, Temperature dependency of relaxation mechanisms in amorphous polymers and other glass forming liquids, J. Am. Chem. Soc., 77, 3701-3707, (1955) · doi:10.1021/ja01619a008
[42] Li, R., Time-temperature super-position method for glass transition temperature of plastic materials, Mater. Sci. Eng. A, 278, 36-45, (2000) · doi:10.1016/S0921-5093(99)00602-4
[43] Gotlib, YY; Gurtovenko, AA, The model theory of viscoelastic relaxation properties of bulk cross-linked polymers. Interchain friction effects, Macromol. Theory Simul., 6, 523-551, (1997) · doi:10.1002/mats.1997.040060214
[44] Miehe, C.; Goktepe, S., A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity, J. Mech. Phys. Solids, 53, 2231-2258, (2005) · Zbl 1120.74373 · doi:10.1016/j.jmps.2005.04.006
[45] Römer, L.; Scheibe, T., The elaborate structure of spider silk, Prion, 2, 154-161, (2008) · doi:10.4161/pri.2.4.7490
[46] Vincente, JD, Viscoelastic properties of biological materials, Viscoelasticity - From theory to biological applications, (2012), Intech
[47] Sasaki, N.; Yoshikawa, M., Stress relaxation in native and EDTA-treated bone as a function of mineral content, J. Biomech., 26, 77-83, (1993) · doi:10.1016/0021-9290(93)90615-L
[48] Iyo, T.; Sasaki, N.; Maki, Y.; Nakata, M., Mathematical description of stress relaxation of bovine femoral cortical bone, Biorheology, 43, 117-132, (2006)
[49] Mansoori, GA, Heavy Organics Depositions from Petroleum Fluids, University of Illinois at Chicago. See http://tigger.uic.edu/ mansoori/HOD_html., (2010)
[50] Muschik, W., Non-equilibrium thermodynamics with applications to solids, CISM-Course 336, (1993), Springer · Zbl 0786.00027
[51] ABAQUS Analysis user’s manual - Volume III: materials, version 6.5, (2004)
[52] Temme, K.; Verstraete, F., Quantum chi-squared and goodness of fit testing, J. Math. Phys., 56, 012202, (2015) · Zbl 1311.81018 · doi:10.1063/1.4905843
[53] Knauss, WG; Emri, I.; Lu, H., Mechanics of polymers: viscoelasticity, Springer handbook of experimental solid mechanics, 49-96, (2008)
[54] Shen, J.; Cheng, P.; Gu, W.; Hao, Z., Stress relaxation measurement of viscoelastic materials using a polymer-based microfluidic device, Sens. Actuators, A, 203, 119-130, (2013) · doi:10.1016/j.sna.2013.08.038
[55] Mechanical properties of bone. Dissemination of IT for the promotion of materials science. See http://www.doitpoms.ac.uk/tlplib/bones/bone_mechanical.php., (2013)
[56] Xu, Q.; Zhu, H.; Prozzi, JA, An inverse model and mathematical solution for inferring viscoelastic properties and dynamic deformation of heterogeneous structures, Comput. Methods Appl. Mech. Eng., 300, 798-833, (2016) · doi:10.1016/j.cma.2015.11.012
[57] Petra, N.; Zhu, H.; Stadler, G.; Hughes, TJR; Ghattas, O., An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciol., 58, 889-903, (2012) · doi:10.3189/2012JoG11J182
[58] Sun, L.; Pan, Y.; Gu, W., High-order thin layer method for viscoelastic wave propagation in stratified media, Comput. Methods Appl. Mech. Eng., 257, 65-76, (2013) · Zbl 1286.74053 · doi:10.1016/j.cma.2013.01.004
[59] Xu, Q.; Prozzi, J., A time domain finite element method for dynamic viscoelastic solution of layered half space, Comput. Struct., 260, 20-39, (2015) · doi:10.1016/j.compstruc.2015.07.005
[60] Lakes, RS; Wineman, A., On Poisson’s ratio in linearly viscoelastic solids, J. Elasticity, 85, 45-63, (2006) · Zbl 1098.74013 · doi:10.1007/s10659-006-9070-4
[61] Chung, J.; Hulbert, GM, A family of single-step Houbolt time integration algorithms for structural dynamics, Comput. Methods Appl. Mech. Eng., 118, 1-11, (1994) · Zbl 0849.73079 · doi:10.1016/0045-7825(94)90103-1
[62] Oden, JT, Finite elements of nonlinear continua, (2006), Dover Publications
[63] Atkinson, KE, An introduction to numerical analysis, (1989), John Wiley & Sons
[64] You, T.; Ai-Rub, RKA; Masad, E.; Little, D., Three-dimensional microstructural modeling framework for dense-graded asphalt concrete using a coupled viscoelastic, viscoplastic, and viscodamage model, J. Mater. Civ. Eng., 26, 607-621, (2014) · doi:10.1061/(ASCE)MT.1943-5533.0000860
[65] Dutta, J.; Naskar, K., Investigation of morphology, mechanical, dynamic mechanical and thermal behaviour of blends based on ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU), RSC Adv., 4, 60 831-60 841, (2014) · doi:10.1039/C4RA07823C
[66] Bhat, S.; Tripathi, A.; Kumar, A., Supermacroprous chitosan-agarose-gelatin cryogels: \(in vitro\) characterization and \(in vivo\) assessment for cartilage tissue engineering, J. R Soc. Interface, 8, 540-554, (2011) · doi:10.1098/rsif.2010.0455
[67] Thurner, PJ, High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage, Eng. Fract. Mech., 74, 1928-1941, (2007) · doi:10.1016/j.engfracmech.2006.05.024
[68] Sun, TL; Kurokawa, T.; Kuroda, S.; Ihsan, AB; Akasaki, T.; Sato, K.; Haque, MA; Nakajima, T.; Gong, JP, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nat. Mater., 12, 932-937, (2013) · doi:10.1038/nmat3713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.