×

Thermal radiation effect on flow and heat transfer of unsteady MHD micropolar fluid over vertical heated nonisothermal stretching surface using group analysis. (English) Zbl 1376.76075

Summary: The aim of this paper is to study the thermal radiation effects on the flow and heat transfer of an unsteady magnetohydrodynamic (MHD) micropolar fluid over a vertical heated nonisothermal stretching surface in the presence of a strong nonuniform magnetic field. The symmetries of the governing partial differential equations are determined by the two-parameter group method. One of the resulting systems of reduced nonlinear ordinary differential equations are solved numerically by the Chebyshev spectral method. The effects of various parameters on the velocity, the angular velocity, and the temperature profiles as well as the skin-friction coefficient, the wall couple stress co-efficient, and the Nusselt number are studied.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
35Q35 PDEs in connection with fluid mechanics
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hayat, T., Abbas, Z., and Javed, T. Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Physics Letters A, 372, 637-647 (2008) · Zbl 1217.76014 · doi:10.1016/j.physleta.2007.08.006
[2] Ishak, A. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica, 45, 367-373 (2010) · Zbl 1258.76022 · doi:10.1007/s11012-009-9257-4
[3] Mahmoud, M. A. A. and Waheed, S. E. MHD flow and heat transfer of a micropolar fluid over a nonlinear stretching surface with variable surface heat flux and heat generation. Canadian Journal of Chemical Engineering, 89, 1408-1415 (2011) · doi:10.1002/cjce.20495
[4] Eringen, A. Simple microfluids. International Journal of Engineering Science, 2, 205-217 (1964) · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[5] Eringen, A. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1-18 (1966)
[6] Eringen, A. Theory of thermomicropolar fluids. Journal of Mathematical Analysis and Applications, 9, 480-496 (1972) · Zbl 0241.76012 · doi:10.1016/0022-247X(72)90106-0
[7] Agarwal, R. S. and Dhanapal, C. Numerical solution of unsteady flow and heat transfer in a micropolar fluid past a porous flat plate. Indian Journal of Pure and Applied Mathematics, 20, 513-520 (1989) · Zbl 0666.76018
[8] Damesh, R. A., Al-Azab, T. A., Shannak, B. A., and Al-Husein, M. Unsteady natural convection heat transfer of micropolar fluid over a vertical surface with constant heat flux. Turkish Journal of Engineering and Environmental Sciences, 31, 225-233 (2007)
[9] Nazar, R., Ishak, A., and Pop, I. Unsteady boundary layer flow over a stretching sheet in a micropolar fluid. International Journal of Engineering and Natural Sciences, 2, 161-165 (2008)
[10] Nazar, R.; Ishak, A.; Darus, M.; Pop, I., Unsteady boundary layer flow and heat transfer over a stretching surface in a micropolar fluid. Proceedings of the 13th WSEAS International Conference on Applied Mathematics (Math’08), 273-278 (2008)
[11] Bachok, N., Ishak, A., and Nazar, R. Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid. Meccanica, 46, 935-942 (2011) · Zbl 1271.76009 · doi:10.1007/s11012-010-9353-5
[12] Ibrahim, F. S. and Hamad, M. A. A. Group method analysis of mixed convection boundary-layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder. Acta Mechanica, 181, 65-81 (2006) · Zbl 1130.76066 · doi:10.1007/s00707-005-0272-9
[13] Abd-Elaziz, M. M. and Ahmed, S. E. Group solution for unsteady boundary layer flow of a micropolar fluid near the rear stagnation point of a plane surface in a porous medium. Latin American Applied Research, 38, 161-168 (2008)
[14] Hassanien, I. A. and Hamad, M. A. Group theoretic method for unsteady free convection flow of a micropolar fluid along a vertical plate in a thermally stratified medium. Applied Mathematical Modelling, 32, 1099-1114 (2008) · Zbl 1145.76414 · doi:10.1016/j.apm.2007.02.030
[15] Chamkha, A. J., Mohamed, R. A., and Ahmed, S. E. Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica, 46, 399-411 (2011) · Zbl 1271.76378 · doi:10.1007/s11012-010-9321-0
[16] Moran, M. J. and Gaggioli, R. A. A new systematic formalism for similarity analysis. Journal of Engineering Mathematics, 3, 151-162 (1969) · Zbl 0176.08601 · doi:10.1007/BF01535519
[17] El-Gendi, S. E. On Chebyshev solution of parabolic partial differential equations. Journal of the Institute of Mathematics and Its Applications, 16, 283-289 (1975) · Zbl 0335.65049 · doi:10.1093/imamat/16.3.283
[18] Hassanien, I. A., El-Hawary, H. M., and Salama, A. A. Chebyshev solution of axisymmetric stagnation flow on a cylinder. Energy Conversion and Management, 37, 67-76 (1996) · doi:10.1016/0196-8904(95)00021-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.