Belaïdi, B.; El Farissi, Abdallah Differential polynomials generated by second order linear differential equations. (English) Zbl 1165.34430 J. Appl. Anal. 14, No. 2, 259-271 (2008). Summary: We study fixed points of solutions of the differential equation\[ f^{{\prime \prime }}+A_{1}( z) f^{{\prime }}+A_{0}(z) f=0, \] where \(A_{j}(z) ( \not\equiv 0)\), \(j=0, 1\), are transcendental meromorphic functions with finite order. Instead of looking at the zeros of \(f( z)-z\), we proceed to a slight generalization by considering zeros of \(g(z)-\varphi ( z)\), where \(g\) is a differential polynomial in \(f\) with polynomial coefficients, \(\varphi\) is a small meromorphic function relative to \(f\), while the solution \(f\) is of infinite order. MSC: 34M10 Oscillation, growth of solutions to ordinary differential equations in the complex domain 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory Keywords:linear differential equations; meromorphic solutions; hyper order; exponent of convergence of the sequence of distinct zeros; hyper exponent of convergence of the sequence of distinct zeros PDF BibTeX XML Cite \textit{B. Belaïdi} and \textit{A. El Farissi}, J. Appl. Anal. 14, No. 2, 259--271 (2008; Zbl 1165.34430) Full Text: DOI Link References: [1] Chen Z. X., Analysis (Oxford) 14 pp 425– (1994) [2] Chen Z. X., Acta Math. Sci. Ser. A Chin. Ed. 20 (3) pp 425– (2000) [3] Chen Z. X., Ser.) 21 (4) pp 753– (2005) [4] Gundersen G. G., Proc. Roy. Soc. Edinburg Sect. A 102 pp 9– (1986) [5] Gundersen G. G., Trans. Amer. Math. Soc. 305 pp 415– (1988) · doi:10.1090/S0002-9947-1988-0920167-5 [6] Gundersen G. G., J. London Math. Soc. 37 (2) pp 88– (1988) [7] Hayman W. K., Canad. Math. Bull. 17 pp 317– (1974) · Zbl 0314.30021 · doi:10.4153/CMB-1974-064-0 [8] Kinnunen L., Southeast Asian Bull. Math. 22 (4) pp 385– (1998) [9] Laine I., Complex Var. Theory Appl. 49 (12) pp 897– (2004) [10] Liu M. S., Ann. Acad. Sci. Fenn. Math. 31 pp 191– (2006) [11] Wang J., Complex Var. Theory Appl. 48 (1) pp 83– (2003) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.