El Farissi, Abdallah; Dahmani, Zoubir; Bouraoui, Yasmina Khati The Riemann-Liouville operator to generate some integral inequalities. (English) Zbl 1234.26044 J. Interdiscip. Math. 14, No. 4, 445-452 (2011). Summary: The Riemann-Uouville fractional integral operator is used to establish some new integral inequalities of Hermite-Hadamard type. Cited in 1 Document MSC: 26D10 Inequalities involving derivatives and differential and integral operators 26A33 Fractional derivatives and integrals Keywords:convex function; Hermite-Hadamard inequality; Riemann-Liouville fractional integral PDF BibTeX XML Cite \textit{A. El Farissi} et al., J. Interdiscip. Math. 14, No. 4, 445--452 (2011; Zbl 1234.26044) Full Text: DOI Link References: [1] Belarbi S., J.I.P.A.M 10 (3) (2009) [2] Belaidi B., RGMIA 12 (1) (2009) [3] Dahmani Z., Ann. Funct. Anal 1 pp 51– (2010) [4] Dragomir S. S., Selected topic in Hermite Hadamard inequalities Monographs (2000) [5] Florea A., Bul. Soc. Sci. Math. Roum 50 (98) pp 149– (2007) [6] R. Gorenflo F. MainardiFractional calculus: integral and differential equations of fractional orderSpringer Verlag, Wien 1997 223 276 [7] Hadamard J., J. Math. Pures et Appl 58 pp 171– (1893) [8] Ch. Hermite, Sur deux limites d’une integrale definie, Mathesis3 1883 82 [9] Marshall A. W., Inequalities: Theory of Majoration and Applications (1979) [10] Marinkovic S., Comput. Math. Appl 56 pp 2490– (2008) · Zbl 1165.33308 · doi:10.1016/j.camwa.2008.05.035 [11] Niculescu C. P., CMS Books in Mathematics 23 (2006) [12] Podlubni I., Fractional Differential Equations (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.