×

Effects of density-dependent migrations on stability of a two-patch predator-prey model. (English) Zbl 1129.92064

Summary: We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities.
First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.

MSC:

92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations

Software:

Maple; LOCBIF; AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Briggs, C. J.; Hoopes, M. F., Stabilizing effects in spatial parasitoid – host and predator-prey models: a review, Theor. Popul. Biol., 65, 299 (2004) · Zbl 1109.92047
[2] Mchich, R.; Auger, P.; Bravo de la Parra, R.; Raissi, N., Dynamics of a fishery on two fishing zones with fish stock dependent migrations: aggregation and control, Ecol. Model., 158, 51 (2002)
[3] Mchich, R.; Auger, P.; Poggiale, J. C., Effect of predator density dependent dispersal of prey on stability of a predator-prey system, Math. Biosci., 206, 343 (2007) · Zbl 1114.92069
[4] Tilman, D.; Kareiva, P., Spatial Ecology (1997), Princenton University Press
[5] French, D. R.; Travis, J. M.J., Density-dependent dispersal in host-parasitoid assemblages, Oikos, 95, 125 (2001)
[6] Amarasekare, P., Interactions between local dynamics and dispersal: insights from single species models, Theor. Popul. Biol., 53, 44 (1998) · Zbl 0894.92029
[7] Jánosi, I. M.; Scheuring, I., On the evolution of density dependent dispersal in a spatially structured population model, J. Theor. Biol., 187, 397 (1997) · Zbl 0926.92025
[8] Saether, B. E.; Engen, S.; Lande, R., Finite metapopulation models with density-dependent migration and stochastic local dynamics, Proc. R. Soc. Lond. B, 266, 113 (1999)
[9] Silva, J. A.L.; de Castro, M. L.; Justo, D. A.R., Stability in a metapopulation model with density-dependent dispersal, Bull. Math. Biol., 63, 485 (2001) · Zbl 1323.92189
[10] Amarasekare, P., Spatial variation and density-dependent dispersal in competitive coexistence, Proc. R. Soc. Lond. B, 271, 1497 (2004)
[11] Amarasekare, P., The role of density-dependent dispersal in source-sink dynamics, J. Theor. Biol., 226, 159 (2004) · Zbl 1439.92149
[12] Shigesada, N.; Roughgarden, J., The role of rapid dispersal in the population dynamics of competition, Theor. Popul. Biol., 21, 353 (1982) · Zbl 0494.92021
[13] Iwasa, Y.; Andreasen, V.; Levin, S. A., Aggregation in model ecosystems I. Perfect aggregation, Ecol. Model., 37, 287 (1987)
[14] Iwasa, Y.; Levin, S. A.; Andreasen, V., Aggregation in model ecosystems II. Approximate aggregation, IMA. J. Math. Appl. Med. Bio., 6, 1 (1989) · Zbl 0659.92023
[15] Auger, P.; Roussarie, R., Complex ecological models with simple dynamics: from individuals to populations, Acta Biotheor., 42, 111 (1994)
[16] P. Auger, J.C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, in: P. Antonelli, P. Auger (Eds.), Special Issue: Aggregation and Emergence in Population Dynamics, Math. Comput. Model. 27 (1998) 1.; P. Auger, J.C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, in: P. Antonelli, P. Auger (Eds.), Special Issue: Aggregation and Emergence in Population Dynamics, Math. Comput. Model. 27 (1998) 1. · Zbl 1185.34055
[17] Auger, P.; Bravo de la Parra, R., Methods of aggregation of variables in population dynamics, CR Acad. Sci. Sci. de la Vie, 323, 665 (2000)
[18] P. Auger, R. Bravo de la Parra, J.C. Poggiale, E. Sánchez, T. Nguyen Huu, Aggregation of variables and applications to population dynamics, Springer, 2007, Book chapter.; P. Auger, R. Bravo de la Parra, J.C. Poggiale, E. Sánchez, T. Nguyen Huu, Aggregation of variables and applications to population dynamics, Springer, 2007, Book chapter.
[19] Auger, P.; Pontier, D., Fast game theory coupled to slow population dynamics: the case of domestic cat populations, Math. Biosci., 148, 65 (1998) · Zbl 0931.92032
[20] Chaumot, A.; Charles, S.; Flammarion, P.; Garric, J.; Auger, P., Using aggregation methods to assess toxicant effects on population dynamics in spatial systems, Ecol. Appl., 12, 1771 (2002)
[21] Lett, C.; Auger, P.; Bravo de la Parra, R., Migration frequency and the persistence of host parasitoid interactions, J. Theor. Biol., 221, 639 (2003) · Zbl 1464.92265
[22] Dubreuil, E.; Auger, P.; Gaillard, J.-M.; Khaladi, M., Effects of aggressive behaviour on age structured population dynamics, Ecol. Model., 193, 777 (2006)
[23] Auger, P.; Kooi, B. W.; Bravo de la Parra, R.; Poggiale, J.-C., Bifurcation analysis of a predator-prey model with predators using hawk and dove tactics, J. Theor. Biol., 238, 597 (2006) · Zbl 1445.92230
[24] Bazykin, A. D., Nonlinear dynamics of interacting populations, World Scientific Ser. Nonlinear Sci. A, 11 (1998) · Zbl 0605.92015
[25] Murray, J. D., Mathematical Biology. Biomathematics text 19 (1989), Springer: Springer Berlin
[26] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, Auto 97: Continuation and bifurcation software for ordinary differential equations, Technical Report, Concordia University, Montreal, Canada, 1997.; E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, Auto 97: Continuation and bifurcation software for ordinary differential equations, Technical Report, Concordia University, Montreal, Canada, 1997.
[27] Khibnik, A. I.; Kuznetsov, Yu. A.; Levitin, V. V.; Nikolaev, E. V., Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps, Physica D, 62, 360 (1993) · Zbl 0784.34030
[28] Yu. A. Kuznetsov, Elements of applied bifurcation theory, Applied Mathematical Sciences, third ed., vol. 112, Springer, New York, 2004.; Yu. A. Kuznetsov, Elements of applied bifurcation theory, Applied Mathematical Sciences, third ed., vol. 112, Springer, New York, 2004. · Zbl 1082.37002
[29] Maplesoft, Waterloo, Ontario, Canada, Maple software.; Maplesoft, Waterloo, Ontario, Canada, Maple software.
[30] Levin, S. A., Dispersal and population interactions A, Nature, 108, 207 (1974)
[31] Jansen, V. A.A., Regulation of predator-prey systems trough spatial interactions: a possible solution to the paradox of enrichment, Oikos, 74, 384 (1995)
[32] Murdoch, W. W.; Briggs, C. J.; Nisbet, R. M., Consumer-Resource Dynamics (2003), Princeton University Press: Princeton University Press Princeton, NJ
[33] Neubert, M. G.; Klepac, P.; van der Driessche, P., Stabilizing dispersal delays in predator-prey metapopulation models, Theor. Popul. Biol., 61, 339 (2002) · Zbl 1038.92032
[34] Nisbet, R. M.; Briggs, C. J.; Gurney, W. S.C.; Murdoch, W. W.; Stewart-Oaten, A., Two-patch metapopulation dynamics, (Levin, S. A.; Steele, J. H.; Powell, T. M., Patch Dynamics in Terrestrial, Freshwater, and Marine Ecosystems (1993), Springer: Springer Berlin)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.