×

zbMATH — the first resource for mathematics

Stochastic quantization of massive fermions. (English) Zbl 1422.81139
Summary: We consider a general solution of the Langevin equation describing massive fermions to an appropriate boundary problem. Assuming existence of such solution we show that its correlators coincide with the Schwinger functions of corresponding Euclidean Quantum Field Theory.
MSC:
81S20 Stochastic quantization
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
81T10 Model quantum field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kupiainen, A., Renormalization group and stochastic PDE’s, Annales Henri Poincaré, 17, 497-535, (2016) · Zbl 1347.81063
[2] Hairer, M., Introduction to regularity structures, Braz. J. Probab. Stat., 29, 175-210, (2015) · Zbl 1316.81061
[3] Glimm, J., The Yukawa coupling of quantum fields in two dimensions. II, Commun. Math. Phys., 6, 61-76, (1967) · Zbl 0162.28902
[4] Gross, DJ; Neveu, A., Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10, 3235-3253, (1974)
[5] Wilson, KG, Renormalization group and critical phenomena, Phys. Rev. B, 4, 3174-3183, (1971) · Zbl 1236.82017
[6] Parisi, G.; Wu, Y., Perturbation theory without gauge fixing, Sci. Sin., 24, 483, (1981)
[7] Berezin, F.A.: Introduction to Superanalysis. Springer (1987) · Zbl 0659.58001
[8] Damgaard, PH; Hüffel, H., Stochastic quantization, Phys. Rep., 152, 227-398, (1987)
[9] Zinn-Justin, J., Renormalization and stochastic quantization, Nucl. Phys., B275, 135-159, (1986)
[10] Osterwalder, K.: Euclidean Fermi Fields, pp. 326-331. Springer, Berlin (1973)
[11] Glimm, J., Jaffe, A.: Quantum Physics. Springer (1987) · Zbl 0461.46051
[12] Osterwalder, K.; Schrader, R., Feynman-kac formula for euclidean fermi and bose fields, Phys. Rev. Lett., 29, 1423-1425, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.