×

zbMATH — the first resource for mathematics

Applications of the worldline Monte Carlo formalism in quantum mechanics. (English) Zbl 1427.81064
Summary: In recent years efficient algorithms have been developed for the numerical computation of relativistic single-particle path integrals in quantum field theory. Here, we adapt this “worldline Monte Carlo” approach to the standard problem of the numerical approximation of the non-relativistic path integral, resulting in a formalism whose characteristic feature is the fast, non-recursive generation of an ensemble of trajectories that is independent of the potential, and is thus universally applicable. The numerical implementation discretises the trajectories with respect to their time parametrisation but maintains a continuous spatial domain. In the case of singular potentials, the discretised action gets adapted to the singularity through a “smoothing” procedure. We show for a variety of examples (the harmonic oscillator in various dimensions, the modified Pöschl-Teller potential, delta-function potentials, the Coulomb and Yukawa potentials) that the method allows one to obtain fast and reliable estimates for the Euclidean propagator and use them in a certain time window suitable for extracting the ground state energy. Usually Monte Carlo calculations in quantum mechanics are performed using algorithms that involve a more specific adaptation to the potential, and we briefly compare our method with the most widely used such algorithms, which are of Metropolis type. As an aside, we apply it for studying the classical limit where nearly classical trajectories are expected to dominate in the path integral. We expect the advances made here to be useful also in the relativistic case.
MSC:
81S40 Path integrals in quantum mechanics
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Salpeter, E. E.; Bethe, H. A., Phys. Rev., 84, 1232-1242 (1951)
[2] Feynman, R. P., Phys. Rev., 80, 440-457 (1950)
[3] Feynman, R. P., Phys. Rev., 84, 108-128 (1951)
[4] Strassler, M. J., Nucl. Phys. B, 385, 145-184 (1992), arXiv:hep-ph/9205205
[5] Bern, Z.; Kosower, D. A., Nucl. Phys. B, 362, 389-448 (1991)
[6] Bern, Z.; Kosower, D. A., Nucl. Phys. B, 379, 451-561 (1992)
[7] Schubert, C., Phys. Rep., 355, 73-234 (2001), arXiv:hep-th/0101036
[8] Simonov, Y. A.; Tjon, J. A., Ann. Physics, 22, 1 (1993)
[9] Nieuwenhuis, T.; Tjon, J. A., Phys. Rev. Lett., 77, 814-817 (1996), arXiv:hep-ph/9606403v1
[10] T. Nieuwenhuis, The Feynman-Schwinger representation of field theory applied to two-boby bound states, PhD. Thesis, University of Utrecht 1995, ISBN 90-393-0890-X. PhD. Thesis, ISBN 90-393-0890-X.
[11] Savkli, C.; Tjon, J.; Gross, F., Phys. Rev. C. Phys. Rev. C, Phys. Rev. C, 61, 069901 (2000), Erratum:
[12] Savkli, C., Czech J. Phys., 51, B71 (2001), arXiv:hep-ph/0011249
[13] Savkli, C.; Gross, F.; Tjon, J., Phys. Atom. Nucl.. Phys. Atom. Nucl., Yad. Fiz., 68, 874 (2005), arXiv:nucl-th/0404068
[14] Nieuwenhuis, T.; Tjon, J. A., Phys. Lett. B, 355, 283 (1995), arXiv:hep-ph/9506346
[15] Gies, H.; Langfeld, K., Nuclear Phys. B, 613, 353-365 (2001), arXiv:hep-th/0102185
[16] Gies, H.; Langfeld, K.; Moyaerts, L., J. High Energy Phys., 06, 018 (2003), arXiv:hep-th/0303264
[17] Gies, H.; Klingmüller, K., Phys. Rev. D, 72 (2005), arXiv:hep-ph/0505099
[18] Gies, H.; Sanchez-Guillen, J.; Vázquez, R. A., J. High Energy Phys., 08, 067 (2005), arXiv:hep-th/0505275
[19] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., J. Chem. Phys., 21, 1087 (1953)
[20] Edwards, J. P.; Gerber, U.; Schubert, C.; Trejo, M. A.; Weber, A., Phys. Rev. E, 97, 4, Article 042114 pp. (2018), arXiv:1709.04984 [quant-ph]
[21] Creutz, M.; Jacobs, L.; Rebbi, C., Phys. Rev. Lett., 42, 1390 (1979)
[22] Creutz, M.; Freedman, B., Ann. Phys., 132, 427 (1981)
[23] Westbroek, Marise J. E.; King, Peter R.; Dürr, Stephan, Amer. J. Phys., 86, 4, 293 (2018)
[24] Ronnie Rodgers, Laura Raes, Karl Jansel, Krzysztof Cichy, Monte Carlo simulations of harmonic ans anharmonic oscillators in discrete Euclidean time, DESY Summer Student Programme, 2014. https://www-zeuthen.desy.de/students/2014/reports/RodgersRaes.pdf.
[25] Datta, S.; Fry, J. L.; Fazleev, N. G.; Alexander, S. A.; Coldwell, R. L., Phys. Rev. A, 61, Article 030502 pp. (2000)
[26] Balaz, A.; Bogojevic, A.; Vidanovic, I.; Pelster, A., Phys. Rev. E, 79, Article 036701 pp. (2009), arXiv:0806.4774
[27] Balaz, A.; Vidanovic, I.; Bogojevic, A.; Pelster, A., Phys. Lett. A, 374, 1539 (2010), arXiv:1001.1463
[28] Feynman, R. P.; Hibbs, A. R., Quantum Mechanis and Path Integrals (2010), Dover · Zbl 1220.81156
[29] Schulman, L. S., Techniques and Applications of Path Integration (2005), Dover · Zbl 1141.28009
[30] Dittrich, W.; Reuter, M., Classical and Quantum Dynamics (1994), Springer · Zbl 0769.70001
[31] Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (2009), World Scientific · Zbl 1169.81001
[32] Gies, H.; Langfeld, K., Internat. J. Modern Phys. A, 17, 966-978 (2002), arXiv:hep-th/0112198
[33] Gordon, J.; Semenoff, G. W., J. Math. Phys.. J. Math. Phys., J. Math. Phys., 59, 019901 (2018), Erratum:
[34] K. Langfeld, G. Dunne, H. Gies, K. Klingmüller, Worldline approach to chiral fermions, Proc. of XXV International Symposium on Lattice Field Theory, Regensburg 2007, PoSLAT2007:202 (2007), arXiv:0709.4595v1.
[35] Mazur, D.; Heyl, J. S., Phys. Rev. D, 91, Article 065019 pp. (2015)
[36] Caffarel, M.; Claverie, P., J. Chem. Phys., 88, 2, 1088-1099 (1988)
[37] Caffarel, M.; Claverie, P., J. Chem. Phys., 88, 2, 1100-1109 (1988)
[38] Miller, R. G., Biometrika, 61, 1-15 (1974)
[39] Efron, B.; Stein, C., Ann. Statist., 9, 586-596 (1981)
[40] Dong, S.-H., Factorization Method in Quantum Mechanics (2007), Springer
[41] Gangopadhyaya, A.; Mallow, J.; Rasinariu, C., Supersymmetric Quantum Mechanics (2017), World Scientific · Zbl 0991.81033
[42] Kay, I.; Moses, H. E., J. Appl. Phys., 27, 1503-1508 (1956)
[43] Grosche, C.; Steiner, F., HandBook of Feynman Path Integrals (1998), Springer · Zbl 1029.81045
[44] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics: Non-Relativistic Theory, Vol. 3 (1977), Pergamon Press
[45] Wells, J. C.; Schultz, D. R.; Gavras, P.; Pindzola, M. S., Phys. Rev. A, 54, 593 (1996)
[46] Gordon, A.; Jirauschek, C.; Kärtner, F. X., Phys. Rev. A, 73, Article 042505 pp. (2006)
[47] Yukawa, H., Proc. Phys. Math. Soc. Jpn., 17 (1935)
[48] Debye, V. P.; Hückel, E., Phys. Z., 9, 185-206 (1923)
[49] Jost, R.; Pais, A., Phys. Rev., 82, 840-851 (1951)
[50] Bargmann, V., Proc. Natl. Acad. Sci. USA, 38, 961-966 (1952)
[51] Schwinger, J., Proc. Natl. Acad. Sci. USA, 47, 122-129 (1960)
[52] Harris, G. M., Phys. Rev., 125, 1131-1140 (1962)
[53] Rogers, F. J.; Graboske, H. C.; Harwood, D. J., Phys. Rev. A, 1, 1577-1586 (1970)
[54] Garavelli, S. L.; Oliveira, F. A., Phys. Rev. Lett., 66, 1310-1313 (1991)
[55] Diaz, C. G.; Fernández, F. M.; Castro, E. A., Phys. A: Math. Gen., 24, 2061-2068 (1991)
[56] Gomes, O. A.; Chacham, H.; Mohallem, J. R., Phys. Rev. A, 50, 228-231 (1994)
[57] De Leo, S.; Rotelli, P., Phys. Rev. D, 69, 1-7 (2004), arXiv:hep-th/0401126
[58] Yong-Yao, L.; Xiang-Qian, L.; Kröger, H., Sci. China Phys. Mech. Astron.: G - Phys., 49, 1, 60-70 (2006), arXiv:hep-ph/0407258
[59] Edwards, J. P.; Gerber, U.; Schubert, C.; Trejo, M. A.; Weber, A., PTEP, 2017 (2017), arXiv:1706.09979
[60] Mueller, N.; Venugopalan, R., Phys. Rev. D, 99, 5, Article 056003 pp. (2019), arXiv:1901.10492 [hep-th]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.