×

zbMATH — the first resource for mathematics

Massless Rarita-Schwinger field from a divergenceless antisymmetric tensor-spinor of pure spin-3/2. (English) Zbl 1412.17014
MSC:
17B81 Applications of Lie (super)algebras to physics, etc.
15A66 Clifford algebras, spinors
81R25 Spinor and twistor methods applied to problems in quantum theory
35Q41 Time-dependent Schrödinger equations and Dirac equations
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adler, S., Phys. Rev. D, 92, 0850222, (2015)
[2] Dengiz, S., Eur. Phys. J. C, 76, 566, (2016)
[3] Das, A.; Freeman, D. Z., Nucl. Phys. B, 114, 271, (1976)
[4] Moroi, T.; Murayama, H., Phys. Lett. B, 303, 289, (1993)
[5] Deser, S.; Zumino, B., Phys. Lett. B, 62, 335, (1976)
[6] D. Sorokin, Introduction to the classical theory of high spins, arXiv:hep-th/0405069. · Zbl 1096.81017
[7] Weinberg, S., Phys. Rev., 135, B1049, (1964)
[8] Kugo, T.; Uehara, S., Prog. Theor. Phys., 66, 3, (1981)
[9] Weinberg, S., The Quantum Theory of Fields. Vol. 1: Foundations, (2005), Cambridge University Press
[10] Allcock, G. R.; Hall, S. F., J. Phys. A: Math. Gen., 10, 267, (1977)
[11] Ahluwalia, D. V.; Kirchbach, M., Mod. Phys. Lett. A, 16, 1377, (2001)
[12] Ahluwalia, D. V.; Dadhich, N.; Kirchbach, M., Int. J. Mod. Phys. D, 11, 1621, (2002)
[13] Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M., Eur. Phys. J. A, 51, 35, (2015)
[14] Das, A., Lectures on Quantum Theory, (2008), World Scientific: World Scientific, Singapore
[15] Corson, E. M., Introduction to Tensors, Spinors and Relativistic Wave Equations, (1953), Blackie: Blackie, London · Zbl 0053.32507
[16] Rumer, Y. B.; Fet, A., Group Theory and Quantized Fields, (1977), Nauka: Nauka, Moscow
[17] N. A. Lanfear, The Pauli-Lubanski vector in group-theoretical approach to relativistic wave equations, Ph.D. thesis, Arizona State University, August 2016, pp. 81-86.
[18] Krychkov, S. I.; Lanfear, N. A.; Suslov, S., Phys. Scr., 91, 035301, (2016)
[19] Barut, A. O., Electrodynamics and Classical Theory of Fields and Particles, (2010), Dover: Dover, New York
[20] Kim, Y. S.; Noz, M. E., Theory and Applications of the Poincaré Group, (1986), Springer: Springer, Berlin
[21] Brodsky, S. J.; Pauli, H.-C.; Pinsky, S., Phys. Rep., 301, 299, (1998)
[22] Dirac, P. A. M., Rev. Mod. Phys., 21, 392, (1949)
[23] Klishevich, S. M.; Pluyshchay, M. S.; Rausch de Traubenberg, M., Nucl. Phys. B, 616, 419, (2001)
[24] H. Murayama, Lorentz-covariant spectrum of single-particle states and their field theory physics 230A, Spring 2007, https://www.hitoshi.berkely.edu/230a/littlegroup.pdf.
[25] Brink, L.; Khan, A. M.; Ramond, P.; Xiong, X., J. Math. Phys., 43, 6279, (2002)
[26] Repka, J.; de Guise, H., J. Math. Phys., 40, 6087, (1999)
[27] Barut, A. O.; Kleinert, H., Phys. Rev., 157, 1180, (1967)
[28] Pluyshchay, M.; Tschrakion, D. H., Anyons as spin particles: From classical mechanics to field theory, Topics in Quantum Field Theory: Modern Methods in Fundamental Physics, 195-203, (1995), World Scientific
[29] Horvathy, P. A.; Plyushchay, M. S.; Valenzuela, M., Ann. Phys., 325, 1931, (2010)
[30] Bars, I.; Terning, J., Extra Dimensions in Space and Time, (2010), Springer: Springer, New York · Zbl 1207.83001
[31] Bekaert, X.; Skvortsov, E. D., Int. J. Mod. Phys. A, 32, 1730019, (2017)
[32] Schuster, P.; Toro, N., J. High Energy Phys., 1310, 061, (2013)
[33] Kirchbacha, M.; Banda Guzmán, V. M., 761, 012079, (2016)
[34] Laporte, O.; Uhlenbeck, G. E., Phys. Rev., 37, 1380, (1931)
[35] Srednicki, M., Quantum Field Theory, (2007), Cambridge University Press · Zbl 1113.81002
[36] V. M. Banda Guzmán, Teoria de segundo orden para espines arbitrarios en bases tensoriales, Ph.D. thesis, Autonomous University at San Luis Potosí, México, September 2018, https://www.researchgate.net/publication/327405619_Teoria_de_segundo_orden_para_espines_arbitrarios_en_bases_tensoriales (in Spanish).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.