×

Worldline formalism for a confined scalar field. (English) Zbl 1421.83107

Summary: The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the \(D\)-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
83C75 Space-time singularities, cosmic censorship, etc.
81T10 Model quantum field theories
81S40 Path integrals in quantum mechanics
83C47 Methods of quantum field theory in general relativity and gravitational theory
35K08 Heat kernel
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bern, Z.; Kosower, DA, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett., 66, 1669 (1991) · doi:10.1103/PhysRevLett.66.1669
[2] Strassler, MJ, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys., B 385, 145 (1992) · doi:10.1016/0550-3213(92)90098-V
[3] Schubert, C., Perturbative quantum field theory in the string inspired formalism, Phys. Rept., 355, 73 (2001) · Zbl 0988.81108 · doi:10.1016/S0370-1573(01)00013-8
[4] Bastianelli, F.; Zirotti, A., Worldline formalism in a gravitational background, Nucl. Phys., B 642, 372 (2002) · Zbl 0998.81064 · doi:10.1016/S0550-3213(02)00683-1
[5] Bastianelli, F.; Corradini, O.; Zirotti, A., Dimensional regularization for \(\mathcal{N} = 1\) supersymmetric σ-models and the worldline formalism, Phys. Rev., D 67, 104009 (2003)
[6] Bastianelli, F.; Benincasa, P.; Giombi, S., Worldline approach to vector and antisymmetric tensor fields, JHEP, 04, 010 (2005) · doi:10.1088/1126-6708/2005/04/010
[7] Bastianelli, F.; Corradini, O.; Latini, E., Spinning particles and higher spin fields on (A)dS backgrounds, JHEP, 11, 054 (2008) · doi:10.1088/1126-6708/2008/11/054
[8] Corradini, O., Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP, 09, 113 (2010) · Zbl 1291.81238 · doi:10.1007/JHEP09(2010)113
[9] Bastianelli, F.; Bonezzi, R.; Corradini, O.; Latini, E., Effective action for higher spin fields on (A)dS backgrounds, JHEP, 12, 113 (2012) · Zbl 1397.81189 · doi:10.1007/JHEP12(2012)113
[10] F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press (2009). · Zbl 1179.81109
[11] Gies, H.; Langfeld, K.; Moyaerts, L., Casimir effect on the worldline, JHEP, 06, 018 (2003) · doi:10.1088/1126-6708/2003/06/018
[12] Fosco, CD; Lombardo, FC; Mazzitelli, FD, Neumann Casimir effect: a singular boundary-interaction approach, Phys. Lett., B 690, 189 (2010) · doi:10.1016/j.physletb.2010.05.020
[13] Marinov, MS, Path Integrals In Quantum Theory: An Outlook Of Basic Concepts, Phys. Rept., 60, 1 (1980) · doi:10.1016/0370-1573(80)90111-8
[14] Sökmen, I., Exact path integral solution to the infinite square well, Phys. Lett., A 106, 212 (1984) · doi:10.1016/0375-9601(84)91010-7
[15] Bastianelli, F.; Corradini, O.; Pisani, PAG, Worldline approach to quantum field theories on flat manifolds with boundaries, JHEP, 02, 059 (2007) · doi:10.1088/1126-6708/2007/02/059
[16] Bastianelli, F.; Corradini, O.; Pisani, PAG; Schubert, C., Scalar heat kernel with boundary in the worldline formalism, JHEP, 10, 095 (2008) · Zbl 1245.81109 · doi:10.1088/1126-6708/2008/10/095
[17] P.B. Gilkey, Invariance Theory: the heat equation and the Atiyah-Singer index theorem, Studies in Advanced Mathematics, CRC-Press (1995). · Zbl 0856.58001
[18] Vassilevich, DV, Heat kernel expansion: User’s manual, Phys. Rept., 388, 279 (2003) · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[19] Boer, J.; Peeters, B.; Skenderis, K.; Nieuwenhuizen, P., Loop calculations in quantum mechanical nonlinear σ-models, Nucl. Phys., B 446, 211 (1995) · Zbl 1009.81526 · doi:10.1016/0550-3213(95)00241-J
[20] Edwards, JP; Mansfield, P., QED as the tensionless limit of the spinning string with contact interaction, Phys. Lett., B 746, 335 (2015) · Zbl 1343.81217 · doi:10.1016/j.physletb.2015.05.024
[21] Edwards, JP; Mansfield, P., Delta-function Interactions for the Bosonic and Spinning Strings and the Generation of Abelian Gauge Theory, JHEP, 01, 127 (2015) · doi:10.1007/JHEP01(2015)127
[22] Edwards, JP, Contact interactions between particle worldlines, JHEP, 01, 033 (2016) · Zbl 1388.81973 · doi:10.1007/JHEP01(2016)033
[23] K. Kirsten, Spectral functions in mathematics and physics, Chapman & Hall/CRC, Boca Raton FL U.S.A. (2001). · Zbl 1162.58303 · doi:10.1201/9781420035469
[24] Clark, TE; Menikoff, R.; Sharp, DH, Quantum Mechanics on the Half Line Using Path Integrals, Phys. Rev., D 22, 3012 (1980)
[25] Bastianelli, F.; Corradini, O.; Pisani, PAG, Scalar field with Robin boundary conditions in the worldline formalism, J. Phys., A 41, 164010 (2008) · Zbl 1137.81350
[26] Vinas, SAF; Pisani, PAG, Semi-transparent Boundary Conditions in the Worldline Formalism, J. Phys., A 44, 295401 (2011) · Zbl 1222.81204
[27] Carreau, M.; Farhi, E.; Gutmann, S., The Functional Integral for a Free Particle in a Box, Phys. Rev., D 42, 1194 (1990)
[28] Carreau, M., The Functional integral for a free particle on a half plane, J. Math. Phys., 33, 4139 (1992) · Zbl 0769.60100 · doi:10.1063/1.529812
[29] Asorey, M.; Ibort, A.; Marmo, G., Global theory of quantum boundary conditions and topology change, Int. J. Mod. Phys., A 20, 1001 (2005) · Zbl 1134.58302 · doi:10.1142/S0217751X05019798
[30] M. Asorey, A. Ibort and G. Marmo, Path integrals and boundary conditions, in proceedings of 32nd International Meeting on Fundamental Physics (IMFP 2004), Alicante, Spain, 1-5 March 2004, quant-ph/0609023 [INSPIRE]. · Zbl 1134.58302
[31] Asorey, M.; Muñoz-Castaneda, JM; Clemente-Gallardo, J., Boundary conditions: The path integral approach, J. Phys. Conf. Ser., 87, 012004 (2007) · doi:10.1088/1742-6596/87/1/012004
[32] Graham, N.; Jaffe, RL; Khemani, V.; Quandt, M.; Scandurra, M.; Weigel, H., Calculating vacuum energies in renormalizable quantum field theories: A New approach to the Casimir problem, Nucl. Phys., B 645, 49 (2002) · Zbl 0999.81059 · doi:10.1016/S0550-3213(02)00823-4
[33] Graham, N.; Jaffe, RL; Khemani, V.; Quandt, M.; Scandurra, M.; Weigel, H., Casimir energies in light of quantum field theory, Phys. Lett., B 572, 196 (2003) · Zbl 1056.81528 · doi:10.1016/j.physletb.2003.03.003
[34] Graham, N.; Jaffe, RL; Khemani, V.; Quandt, M.; Schroeder, O.; Weigel, H., The Dirichlet Casimir problem, Nucl. Phys., B 677, 379 (2004) · Zbl 1065.81090 · doi:10.1016/j.nuclphysb.2003.11.001
[35] Gies, H.; Langfeld, K., Quantum diffusion of magnetic fields in a numerical worldline approach, Nucl. Phys., B 613, 353 (2001) · Zbl 0970.81090 · doi:10.1016/S0550-3213(01)00377-7
[36] Gies, H.; Klingmuller, K., Pair production in inhomogeneous fields, Phys. Rev., D 72, 065001 (2005)
[37] Schaden, M., Numerical and semiclassical analysis of some generaliz ed Casimir pistons, Phys. Rev., A 79, 052105 (2009) · doi:10.1103/PhysRevA.79.052105
[38] Schaden, M., Irreducible Scalar Many-Body Casimir Energies: Theorems and Numerical Studies, Int. J. Mod. Phys. Conf. Ser., 14, 501 (2012) · doi:10.1142/S2010194512007635
[39] Mackrory, JB; Bhattacharya, T.; Steck, DA, Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media, Phys. Rev., A 94, 042508 (2016) · doi:10.1103/PhysRevA.94.042508
[40] Gies, H.; Klingmuller, K., Casimir effect for curved geometries: PFA validity limits, Phys. Rev. Lett., 96, 220401 (2006) · doi:10.1103/PhysRevLett.96.220401
[41] Gies, H.; Klingmuller, K., Worldline algorithms for Casimir configurations, Phys. Rev., D 74, 045002 (2006)
[42] Schafer, M.; Huet, I.; Gies, H., Energy-Momentum Tensors with Worldline Numerics, Int. J. Mod. Phys. Conf. Ser., 14, 511 (2012) · Zbl 1344.81139 · doi:10.1142/S2010194512007647
[43] Schafer, M.; Huet, I.; Gies, H., Worldline Numerics for Energy-Momentum Tensors in Casimir Geometries, J. Phys., A 49, 135402 (2016) · Zbl 1344.81139
[44] K. Aehlig, H. Dietert, T. Fischbacher and J. Gerhard, Casimir Forces via Worldline Numerics: Method Improvements and Potential Engineering Applications, arXiv:1110.5936 [INSPIRE].
[45] D. Mazur and J.S. Heyl, Parallel Worldline Numerics: Implementation and Error Analysis, arXiv:1407.7486 [INSPIRE].
[46] Edwards, JP; Gerber, U.; Schubert, C.; Trejo, MA; Weber, A., Integral transforms of the quantum mechanical path integral: hit function and path averaged potential, Phys. Rev., E 97, 042114 (2018)
[47] J.P. Edwards, U. Gerber, C. Schubert, M.A. Trejo, T. Tsiftsi and A. Weber, Applications of the worldline Monte Carlo formalism in quantum mechanics, arXiv:1903.00536 [INSPIRE]. · Zbl 1427.81064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.