zbMATH — the first resource for mathematics

QED as the tensionless limit of the spinning string with contact interaction. (English) Zbl 1343.81217
Summary: QED with spinor matter is argued to correspond to the tensionless limit of spinning strings with contact interactions. The strings represent electric lines of force with charges at their ends. The interaction is constructed from a delta-function on the world-sheet which, although off-shell, decouples from the world-sheet metric. Integrating out the string degrees of freedom with fixed boundary generates the super-Wilson loop that couples spinor matter to electromagnetism in the world-line formalism. World-sheet and world-line, but not spacetime, supersymmetry underpin the model.

81V10 Electromagnetic interaction; quantum electrodynamics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81R25 Spinor and twistor methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] Faraday, M., Thoughts on ray-vibrations, Philos. Mag., xxviii, 345, (1846), reprinted in: Experimental Researches in Chemistry and Physics, ISBN 0-85066-841-7
[2] Dirac, P. A.M., Gauge-invariant formulation of quantum electrodynamics, Can. J. Phys., 33, 650, (1955) · Zbl 0068.22801
[3] Woolley, R. G.; Woolley, R. G., Mol. Phys., Proc. R. Soc. Lond. Ser. A, 321, 557, (1971)
[4] Nielsen, H. B.; Olesen, P., Local field theory of the dual string, Nucl. Phys. B, 57, 367, (1973)
[5] Dirac, P. A.M., The theory of magnetic poles, Phys. Rev., 74, 817, (1948) · Zbl 0034.27604
[6] Nambu, Y., Strings, monopoles, and gauge fields, Phys. Rev. D, 10, 4262, (1974)
[7] Baker, M.; Steinke, R., Phys. Rev. D, 63, 094013, (2001)
[8] Olesen, P.; Tze, H. C., Phys. Lett. B, 50, 482, (1974)
[9] Kalb, M.; Ramond, P., Classical direct interstring action, Phys. Rev. D, 9, 2273, (1974)
[10] Nepomechie, R. I.; Rubin, M. A.; Hosotani, U., A new formulation of the string action, Phys. Lett. B, 105, 457, (1981)
[11] Mansfield, P., Faraday’s lines of force as strings: from Gauss’ law to the arrow of time, J. High Energy Phys., 1210, 149, (2012)
[12] Polyakov, A. M., Quantum geometry of bosonic strings, Phys. Lett. B, 103, 207, (1981)
[13] Strassler, M. J., Field theory without Feynman diagrams: one loop effective actions, Nucl. Phys. B, 385, 145, (1992)
[14] Edwards, J. P.; Mansfield, P., Delta-function interactions for the bosonic and spinning strings and the generation of abelian gauge theory, J. High Energy Phys., 1501, 127, (2015)
[15] Schubert, C., Perturbative quantum field theory in the string inspired formalism, Phys. Rep., 355, 73, (2001) · Zbl 0988.81108
[16] Ilderton, A., Localisation in worldline pair production and lightfront zero-modes · Zbl 1333.81282
[17] Brink, L.; Di Vecchia, P.; Howe, P. S., A Lagrangian formulation of the classical and quantum dynamics of spinning particles, Nucl. Phys. B, 118, 76, (1977)
[18] Distler, J.; Kawai, H., Nucl. Phys. B, 321, 509, (1989)
[19] Friedan, D.; Martinec, E. J.; Shenker, S. H., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B, 271, 93, (1986)
[20] Armorim, R.; Barcelos-Neto, J., Strings with zero tension, Z. Phys. C, Part. Fields, 38, 643, (1988)
[21] Karlhede, A.; Lindström, U., The classical bosonic string in the zero tensionless limit, Class. Quantum Gravity, 3, L73, (1986)
[22] Isberg, J.; Lindström, U.; Sundborg, B.; Theodoridis, G., Classical and quantized tensionless strings · Zbl 1049.81596
[23] Lindström, U.; Sundborg, B.; Theodoridis, G., The zero tension limit of the spinning string, Phys. Lett. B, 258, 331, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.