×

zbMATH — the first resource for mathematics

On the low-energy limit of the QED \(N\)-photon amplitudes: part 2. (English) Zbl 1398.81279
Summary: [For part 1 see the third author et al., ibid. 668, No. 1–2, 335–344 (2003; Zbl 1031.81675)].In recent work, Gies and Karbstein have discovered that the two-loop Euler-Heisenberg Lagrangians for scalar and spinor QED have non-vanishing reducible contributions in addition to the well-studied irreducible ones. This invalidates previous applications of those Lagrangians to the computation of the two-loop \(N\)-photon amplitudes in the low energy limit. Here we compute the corrections to those amplitudes due to the reducible contributions.

MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
81T18 Feynman diagrams
81V80 Quantum optics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bern, Z.; Kosower, D. A., Phys. Rev. Lett., Nucl. Phys. B, 379, 451, (1992)
[2] Bern, Z.; Dixon, L. J.; Kosower, D. A., Annu. Rev. Nucl. Part. Sci., 46, 109, (1996)
[3] Dixon, L., TASI lectures, Boulder TASI 95, 539
[4] Davydychev, A. I., Phys. Lett. B, 263, 107, (1991)
[5] Bern, Z.; Dixon, L. J.; Kosower, D. A., Nucl. Phys. B, 412, 751, (1994)
[6] Campbell, J. M.; Glover, E. W.N.; Miller, D. J., Nucl. Phys. B, 498, 397, (1997)
[7] Pittau, R., Commun. Comput. Phys., 104, 23, (1997)
[8] Weinzierl, S., Phys. Lett. B, 450, 234, (1999)
[9] Fleischer, J.; Jegerlehner, F.; Tarasov, O. V., Nucl. Phys. B, 566, 423, (2000)
[10] Binoth, T.; Guillet, J. P.; Heinrich, G., Nucl. Phys. B, 572, 361, (2000)
[11] Binoth, T.; Guillet, J. P.; Heinrich, G.; Schubert, C., Nucl. Phys. B, 615, 385, (2001)
[12] Elvang, H.; Huang, Y.-t.
[13] Karplus, R.; Neuman, M., Phys. Rev., 80, 380, (1950)
[14] Costantini, V.; De Tollis, D.; Pistoni, G., Nuovo Cimento A, 2, 733, (1971)
[15] Passarino, G.; Veltman, M., Nucl. Phys. B, 160, 151, (1979)
[16] Denner, A., Fortschr. Phys., 41, 307, (1993)
[17] Mahlon, G., Phys. Rev. D, 49, 2197, (1994)
[18] Itzykson, C.; Zuber, J., Quantum field theory, (1985), McGraw-Hill · Zbl 0453.05035
[19] Heisenberg, W.; Euler, H., Z. Phys., 98, 714, (1936)
[20] Dunne, G. V., Ian kogan memorial collection, (Shifman, M. A.; etal., From Fields to Strings: Circumnavigating Theoretical Physics, vol. I, (2004)), 445
[21] Martin, L. C.; Schubert, C.; Villanueva Sandoval, V. M., Nucl. Phys. B, 668, 335, (2003)
[22] Berends, F. A.; Kleiss, R.; De Causmaecker, P.; Gastmans, R.; Wu, T. T., Phys. Lett. B, 103, 124, (1981)
[23] Kleiss, R.; Stirling, W. J., Nucl. Phys. B, 262, 235, (1985)
[24] Xu, Z.; Zhang, D.-H.; Chang, L., Nucl. Phys. B, 291, 392, (1987)
[25] V. Weisskopf, Kong. Dans. Vid. Selsk. Math-fys. Medd., vol. XIV No. 6 (1936), reprinted in: J. Schwinger (Ed.), Quantum Electrodynamics, Dover, New York, 1958.
[26] Ritus, V. I., Zh. Èksp. Teor. Fiz., Sov. Phys. JETP, 42, 774, (1975)
[27] Ritus, V. I., Zh. Èksp. Teor. Fiz., Sov. Phys. JETP, 46, 423, (1977)
[28] Ritus, V. I., The Lagrangian function of an intense electromagnetic field, (Ginzburg, V. I., Proc. Lebedev Phys. Inst., Issues in Intense-Field Quantum Electrodynamics, vol. 168, (1987), Nova Science Pub. NY)
[29] Dittrich, W.; Reuter, M., Effective Lagrangians in quantum electrodynamics, (1985), Springer
[30] Reuter, M.; Schmidt, M. G.; Schubert, C., Ann. Phys. (N.Y.), 259, 313, (1997)
[31] Fliegner, D.; Reuter, M.; Schmidt, M. G.; Schubert, C., Teor. Mat. Fiz., Theor. Math. Phys., 113, 1442, (1997)
[32] Körs, B.; Schmidt, M. G., Eur. Phys. J. C, 6, 175, (1999)
[33] Duff, M. J.; Isham, C. J., Phys. Lett. B, Nucl. Phys. B, 162, 271, (1980)
[34] W.A. Bardeen, Preprint FERMILAB-CONF-95-379-T.
[35] Rosly, A. A.; Selivanov, K. G., Phys. Lett. B, 399, 135, (1997)
[36] Cangemi, D., Nucl. Phys. B, Int. J. Mod. Phys. A, 12, 1215, (1997)
[37] Chalmers, G.; Siegel, W., Phys. Rev. D, 54, 7628, (1996)
[38] Dunne, G. V.; Schubert, C., Phys. Lett. B, 526, 55, (2002)
[39] Dunne, G. V.; Schubert, C., J. High Energy Phys., 0208, 053, (2002)
[40] Fradkin, E. S.; Gitman, D. M.; Shvartsman, S. M., Quantum electrodynamics with unstable vacuum, (1991), Springer
[41] Gies, H.; Karbstein, F., J. High Energy Phys., 1703, (2017)
[42] Edwards, J. P.; Schubert, C., Nucl. Phys. B, 923, 339, (2017)
[43] Ahmadiniaz, N.; Bastianelli, F.; Corradini, O.; Edwards, J. P.; Schubert, C., Nucl. Phys. B, 924, 377, (2017)
[44] Karbstein, F., J. High Energy Phys., 1710, (2017)
[45] ’t Hooft, G., Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D, 14, 3432, (1976)
[46] D’Adda, A.; Di Vecchia, P., Supersymmetry and instantons, Phys. Lett. B, 73, 162, (1978)
[47] Brown, L. S.; Lee, C., Massive propagators in instanton fields, Phys. Rev. D, 18, 2180, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.