×

Quaternionic step derivative: machine precision differentiation of holomorphic functions using complex quaternions. (English) Zbl 1472.65035

Summary: The known Complex Step Derivative (CSD) method allows easy and accurate differentiation up to machine precision of real analytic functions by evaluating them with a small imaginary step next to the real number line. The current paper proposes that derivatives of holomorphic functions can be calculated in a similar fashion by taking a small step in a quaternionic direction instead. It is demonstrated that in so doing the CSD properties of high accuracy and convergence are carried over to derivatives of holomorphic functions. To demonstrate the ease of implementation, numerical experiments were performed using complex quaternions, the geometric algebra of space, and a \(2\times 2\) matrix representation thereof.

MSC:

65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
65D25 Numerical differentiation
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Squire, W.; Trapp, G., Using complex variables to estimate derivatives of real functions, SIAM Rev., 40, 110-112 (1998) · Zbl 0913.65014
[2] Lantoine, G.; Russell, R. P.; Dargent, T., Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Software, 38, 3 (2012) · Zbl 1365.65055
[3] Dorst, L.; Fontijne, D.; Mann, S., Geometric Algebra for Computer Science: An Object-Oriented Approach To Geometry (2009), Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
[4] Hestenes, D.; Lasenby, A., Space-Time Algebra, Second Edition, 1-102 (2015) · Zbl 1316.83005
[5] Weinberg, S., the Quantum Theory of Fields. Vol. 1: Foundations (2005), Cambridge University Press: Cambridge University Press Cambridge, ISBN: 978-0-521-67053-1, 978-0-511-25204-4 · Zbl 1069.81500
[6] Bargmann, V., Irreducible unitary representations of the lorentz group, Ann. of Math., 48, 3, 568-640 (1947) · Zbl 0045.38801
[7] Higham, N. J., Functions of Matrices: Theory and Computation, xx+425 (2008), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1167.15001
[8] Lyness, J. N., Numerical algorithms based on the theory of complex variable, (Proceedings of the 1967 22nd National Conference. Proceedings of the 1967 22nd National Conference, ACM ’67 (1967), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 125-133
[9] Lyness, J. N.; Moler, C. B., Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4, 2, 202-210 (1967), URL arXiv:https://doi.org/10.1137/0704019 · Zbl 0155.48003
[10] Bornemann, F., Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11, 1, 1-63 (2010) · Zbl 1213.65039
[11] Balzani, D.; Gandhi, A.; Tanaka, M.; Schröder, J., Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices, Comput. Mech., 55, 861-871 (2015) · Zbl 1329.74068
[12] Martins, J.; Sturdza, P.; Alonso, J., The complex-step derivative approximation, ACM Trans. Math. Software, 29, 245-262 (2003) · Zbl 1072.65027
[13] Lai, K. L.; Crassidis, J. L., Extensions of the first and second complex-step derivative approximations, J. Comput. Appl. Math., 219, 276-293 (2008) · Zbl 1145.65016
[14] Al-Mohy, A. H.; Nigham, N. J., The complex step approximation to the Fréchet derivative of a matrix function, Numer. Algorithms, 53, 133-148 (2010) · Zbl 1188.65054
[15] Cossette, C. C.; Walsh, A.; Forbes, J. R., The complex-step derivative approximation on matrix Lie groups, IEEE Robot. Autom. Lett., 5, 2, 906-913 (2020)
[16] Casado, J. M.V.; Hewson, R., Algorithm 1008: Multicomplex number class for matlab, with a focus on the accurate calculation of small imaginary terms for multicomplex step sensitivity calculations, ACM Trans. Math. Software, 46, 1-26 (2020) · Zbl 1484.65052
[17] J.R.R.A. Martins, P. Sturdza, J.J. Alonso, The connection between the complex-step derivative approximation and algorithmic differentiation, in: Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, 2001, Paper AIAA-2001-0921.
[18] J.D. Turner, Quaternion-Based Partial Derivative and State Transition Matrix calculations for design optimization, in: Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, 2002, Paper AIAA-2002-0448.
[19] Price, G. B., An Introduction to Multicomplex Spaces and Functions (1991), Marcel Dekker Inc.: Marcel Dekker Inc. New York · Zbl 0729.30040
[20] A. Arsenovic, H. Hadfield, E. Wieser, R. Kern, T.P. Team, pygae/clifford, http://dx.doi.org/10.5281/zenodo.1453978.
[21] Meurer, A.; Smith, C. P.; Paprocki, M.; Čertík, O.; Kirpichev, S. B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J. K.; Singh, S.; Rathnayake, T.; Vig, S.; Granger, B. E.; Muller, R. P.; Bonazzi, F.; Gupta, H.; Vats, S.; Johansson, F.; Pedregosa, F.; Curry, M. J.; Terrel, A. R.; Roučka, v.; Saboo, A.; Fernando, I.; Kulal, S.; Cimrman, R.; Scopatz, A., Sympy: symbolic computing in python, Peer J. Comput. Sci., 3, Article e103 pp. (2017)
[22] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Jarrod Millman, K.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0: Fundamental algorithms for scientific computing in python, Nat. Methods, 17, 261-272 (2020)
[23] Ablowitz, M. J.; Fokas, A. S., (Complex Variables: Introduction and Applications. Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics (2003), Cambridge University Press) · Zbl 1088.30001
[24] Dorst, L.; Valkenburg, R., Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition, 81-104 (2011) · Zbl 1290.68121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.