×

Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators. (English) Zbl 1364.34043

Summary: Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
35R10 Partial functional-differential equations
35C07 Traveling wave solutions
34C60 Qualitative investigation and simulation of ordinary differential equation models
92C30 Physiology (general)

Software:

XPPAUT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Cervetto, L.; Demontis, G. C.; Gargini, C., Cellular mechanisms underlying the pharmacological induction of phosphenes, Br. J. Pharmacol., 150, 4, 383-390 (2007)
[2] Zrenner, E., Will retinal implants restore vision?, Science, 295, 5557, 1022-1025 (2002)
[3] Tehovnik, E. J.; Slocum, W. M., Electrical induction of vision, Neurosci. Biobehav. Rev., 37, 5, 803-818 (2013)
[4] Carpenter, R. H.S., Contour-like phosphenes from electrical stimulation of the human eye: some new observations, J. Physiol., 229, 3, 767-785 (1973)
[5] Drover, J. D.; Ermentrout, G. B., Phase boundaries as electrically induced phosphenes, SIAM J. Appl. Dyn. Syst., 5, 4, 529-551 (2006) · Zbl 1210.37068
[6] Parks, H. F.; Ermentrout, G. B.; Rubin, J. E., The dynamics of a forced coupled network of active elements, Physica D, 240, 7, 554-567 (2011) · Zbl 1214.37058
[7] Ermentrout, G. B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Vol. 14 (2002), SIAM · Zbl 1003.68738
[8] Carpio, A.; Bonilla, L. L., Wave front depinning transition in discrete one-dimensional reaction-diffusion systems, Phys. Rev. Lett., 86, 26, 6034 (2001)
[9] Braun, O. M.; Kivshar, Y. S., The Frenkel-Kontorova Model: Concepts, Methods, and Applications (2004), Springer: Springer Berlin, Heidelberg · Zbl 1140.82001
[10] Friesecke, G.; Pego, R. L., Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12, 6, 1601-1626 (1999) · Zbl 0962.82015
[11] Friesecke, G.; Pego, R. L., Solitary waves on FPU lattices: II. Linear implies nonlinear stability, Nonlinearity, 15, 4, 1343-1359 (2002) · Zbl 1102.37311
[12] Friesecke, G.; Pego, R. L., Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory, Nonlinearity, 17, 1, 202-207 (2004) · Zbl 1103.37049
[13] Friesecke, G.; Pego, R. L., Solitary waves on Fermi-Pasta-Ulam lattices: IV. Proof of stability at low energy, Nonlinearity, 17, 1, 229-251 (2004) · Zbl 1103.37050
[14] English, J.; Pego, R. L., On the solitary wave pulse in a chain of beads, Proc. Amer. Math. Soc., 133, 6, 1763-1768 (2005) · Zbl 1063.35146
[15] Stefanov, A.; Kevrekidis, P., Traveling waves for monomer chains with precompression, Nonlinearity, 26, 2, 539-564 (2013) · Zbl 1323.37049
[16] Nesterenko, V., Dynamics of Heterogeneous Materials (2001), Springer-Verlag: Springer-Verlag New York
[17] Pelinovsky, D. E.; Rothos, V. M., Bifurcations of travelling wave solutions in the discrete NLS equations, Physica D, 202, 1, 16-36 (2005) · Zbl 1086.34059
[18] Pelinovsky, D. E., Translationally invariant nonlinear Schrödinger lattices, Nonlinearity, 19, 11, 2695-2716 (2006) · Zbl 1111.39014
[19] Oxtoby, O. F.; Barashenkov, I. V., Moving solitons in the discrete nonlinear Schrödinger equation, Phys. Rev. E, 76, 3, Article 036603 pp. (2007)
[20] Melvin, T. R.O.; Champneys, A. R.; Kevrekidis, P. G.; Cuevas, J., Radiationless traveling waves in saturable nonlinear Schrödinger lattices, Phys. Rev. Lett., 97, 12, Article 124101 pp. (2006)
[21] Melvin, T. R.O.; Champneys, A. R.; Kevrekidis, P. G.; Cuevas, J., Travelling solitary waves in the discrete Schrödinger equation with saturable nonlinearity: Existence, stability and dynamics, Physica D, 237, 4, 551-567 (2008) · Zbl 1167.35448
[22] Syafwan, M.; Susanto, H.; Cox, S. M.; Malomed, B. A., Variational approximations for traveling solitons in a discrete nonlinear Schrödinger equation, J. Phys. A, 45, 7, Article 075207 pp. (2012) · Zbl 1234.35255
[23] Kevrekidis, P. G., The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Vol. 232 (2009), Springer-Verlag: Springer-Verlag Heidelberg
[24] Folias, S. E.; Bressloff, P. C., Stimulus-locked traveling waves and breathers in an excitatory neural network, SIAM J. Appl. Math., 65, 6, 2067-2092 (2005) · Zbl 1076.92004
[25] Ermentrout, G. B.; Jalics, J. Z.; Rubin, J. E., Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function, SIAM J. Appl. Math., 70, 8, 3039-3064 (2010) · Zbl 1209.92009
[26] Homma, S.; Takeno, S., A coupled base-rotator model for structure and dynamics of DNA local fluctuations in helical twist angles and topological solitons, Progr. Theoret. Phys., 72, 4, 679-693 (1984) · Zbl 1074.92501
[27] Takeno, S.; Homma, S., Kinks and breathers associated with collective sugar puckering in DNA, Progr. Theoret. Phys., 77, 3, 548-562 (1987)
[28] Zhang, F., Kink shape modes and resonant dynamics in sine-lattices, Physica D, 110, 1, 51-61 (1997) · Zbl 0925.35137
[29] Morton, K. W.; Mayers, D. F., Numerical Solution of Partial Differential Equations (1994), Cambridge University Press · Zbl 0811.65063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.