×

zbMATH — the first resource for mathematics

Generation of mode-2 internal waves in a two-dimensional stratification by a mode-1 internal wave. (English) Zbl 07214088
Summary: The generation of mode-2 nonlinear internal waves (IWs) by the evolution of a mode-1 IW in a two-dimensional stratification is investigated. A generation model accounting for intermodal interaction is derived based on a multi-modal approach in a weakly nonlinear and non-hydrostatic configuration. The generation model is numerically solved to simulate the evolution of mode-1 and mode-2 IWs in an inhomogeneous pycnocline. The numerical experiments confirm that mode-2 IWs are generated due to linear and nonlinear intermodal interaction. The mode-2 IW continues growing and gradually separates with the mode-1 IW during the generation process. The numerical results suggest that the pycnocline strength or thickness prominently affects the generation of mode-2 IWs, followed by pycnocline depth. A weakening or thinning pycnocline favors the generation of mode-2 IWs by evidently enhancing linear and nonlinear intermodal interaction, whereas a shoaling pycnocline favors a rapid growth rate mainly by enhancing linear intermodal interaction. The wave amplitude of an initial mode-1 IW strongly affects the generation of mode-2 IWs and increasing it can noticeably enlarge mode-2 IWs.
MSC:
76 Fluid mechanics
35 Partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Helfrich, K. R.; Melville, W. K., Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38, 395-425 (2006) · Zbl 1098.76018
[2] Jackson, C., An Atlas of Internal Solitary-Like Waves and their Properties (2004), http://www.internalwaveatlas.com
[3] Cai, S.; Long, X.; Gan, Z., A method to estimate the forces exerted by internal solitons on cylindrical piles, Ocean Eng., 30, 673-689 (2003)
[4] Zhou, J. X.; Zhang, X. Z.; Roger, P. H., Resonant interaction of sound wave with internal solitons in the coastal zone, J. Acoust. Soc. Am., 90, 2042-2054 (1991)
[5] Bogucki, D. J.; Redekopp, L. G.; Barth, J., Internal solitary waves in the coastal mixing and optics 1996 experiment: Multimodal structure and resuspension, J. Geophys. Res., 110, 0 (2005)
[6] Benney, D. J., Long non-linear waves in fluid flows, J. Math. Phys., 45, 52-63 (1966) · Zbl 0151.42501
[7] Yang, Y. J.; Fang, Y. C.; Tang, T. Y.; Ramp, S. R., Convex and concave types of second baroclinic mode internal solitary waves, Nonlinear Processes Geophys., 17, 605-614 (2010)
[8] Davis, R. E.; Acrivos, A., Solitary internal waves in deep water, J. Fluid Mech., 29, 593-607 (1967) · Zbl 0147.46503
[9] Kao, T. W.; Pao, H.-P., Wake collapse in the thermocline and internal solitary waves, J. Fluid Mech., 97, 115-127 (1980)
[10] Mehta, A. P.; Sutherland, B. R.; Kyba, P. J., Interfacial gravity currents. II. wave excitation, Phys. Fluids, 14, 3558-3569 (2002) · Zbl 1185.76252
[11] Helfrich, K. R.; Melville, W. K., On long nonlinear internal waves over slope-shelf topography, J. Fluid Mech., 167, 285-308 (1986)
[12] New, A. L.; Pingree, R. D., Large-amplitude internal soliton packets in the central Bay of Biscay, Deep-Sea Res. Part A, 37, 513-524 (1990)
[13] New, A. L.; Pingree, R. D., Local generation of internal soliton packets in the central bay of Biscay, Deep-Sea Res. Part A, 39, 1521-1534 (1992)
[14] Mercier, M. J.; Mathur, M.; Gostiaux, L.; Gerkema, T.; Magalh√£es, J. M.; Da Silva, J. C.B.; Dauxois, T., Soliton generation by internal tidal beams impinging on a pycnocline: Laboratory experiments, J. Fluid Mech., 704, 37-60 (2012) · Zbl 1246.76007
[15] Stastna, M.; Peltier, W. R., On the resonant generation of large-amplitude internal solitary and solitary-like waves, J. Fluid Mech., 543, 267-292 (2005) · Zbl 1137.76328
[16] Vlasenko, V. I.; Hutter, K., Generation of second mode solitary waves by the interaction of a first mode soliton with a sill, Nonlinear Processes Geophys., 8, 223-239 (2001)
[17] Lamb, K. G., A numerical investigation of solitary internal waves with trapped cores formed via shoaling, J. Fluid Mech., 451, 109-144 (2002) · Zbl 1009.76010
[18] Lamb, K. G.; Warn-Varnas, A., Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea, Nonlinear Processes Geophys., 22, 289-312 (2015)
[19] Grisouard, N.; Staquet, C.; Gerkema, T., Generation of internal solitary waves in a pycnocline by an internal wave beam: A numerical study, J. Fluid Mech., 676, 491-513 (2011) · Zbl 1241.76101
[20] Chen, Z.; Xie, J.; Wang, D.; Zhan, J.; Xu, J.; Cai, S., Density stratification influences on generation of different modes internal solitary waves, J. Geophys. Res., 119, 7029-7046 (2014)
[21] Guo, C.; Chen, X., Numerical investigation of large amplitude second mode internal solitary waves over a slope-shelf topography, Ocean Model., 42, 80-91 (2012)
[22] Belogortsev, A. S.; Rybak, S. A.; Serebryanyi, A. N., Second-mode nonlinear internal waves over a sloping bottom, Acoust. Phys., 59, 62-67 (2013)
[23] Xie, J. S.; Pan, J. Y.; Jay, D. A., Multimodal internal waves generated over a subcritical ridge: Impact of the upper-ocean stratification, J. Phys. Oceanogr., 45, 904-926 (2015)
[24] Yang, Y. J.; Fang, Y. C.; Chang, M.-H.; Ramp, S. R.; Kao, C.-C.; Tang, T. Y., Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea, J. Geophys. Res., 114, 10 (2009)
[25] Liu, A. K.; Su, F.-C.; Hsu, M.-K.; Kuo, N.-J.; Ho, C.-R., Generation and evolution of mode-two internal waves in the South China Sea, Cont. Shelf Res., 59, 18-27 (2013)
[26] Ramp, S. R.; Yang, Y. J.; Reeder, D. B.; Bahr, F. L., Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan, J. Geophys. Res., 117, C03043 (2012)
[27] Shroyer, E. L.; Moum, J. N.; Nash, J. D., Mode 2 waves on the continental shelf: Ephemeral components of the nonlinear internal wavefield, J. Geophys. Res., 115, 0 (2010)
[28] Konyaev, K. V.; Sabinin, K. D.; Serebryany, A. N., Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean, Deep-Sea Res. Part I, 42, 2075-2091 (1995)
[29] da Silva, J. C.B.; New, A. L.; Magalhaes, J. M., On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean, Deep-Sea Res. Part I, 58, 229-240 (2011)
[30] Dong, D.; Yang, X. F.; Li, X. F.; Li, Z. W., SAR observation of eddy-Induced mode-2 internal solitary waves in the South China Sea, IEEE Trans. Geosci. Remote Sens., 54, 6674-6686 (2016)
[31] Vasiliy, V.; Stashchuk, N.; Hutter, K., Baroclinic Tides Theoretical Modelling and Observational Evidence (2005), Cambridge University Press: Cambridge University Press New York · Zbl 1432.86001
[32] Gerkema, T., Development of internal solitary waves in various thermocline regimes - a multi-modal approach, Nonlinear Processes Geophys., 10, 397-405 (2003)
[33] Griffiths, S. D.; Grimshaw, R. H.J., Internal tide generation at the continental shelf modeled using a modal decomposition: Two-Dimensional results, J. Phys. Oceanogr., 37, 428-451 (2007)
[34] Sakai, T.; Redekopp, L. G., A weakly nonlinear model for multi-modal evolution of wind-generated long internal waves in a closed basin, Nonlinear Processes Geophys., 16, 487-502 (2009)
[35] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[36] Tyliszczak, A., Influence of the compact explicit filtering method on the perturbations growth in temporal shear-layer flow, J. Theoret. Appl. Mech., 44, 19-32 (2003)
[37] Wei, G.; Kirby, J. T., Time-dependent numerical code for extended boussinesq equations, J. Waterw. Port Coast Ocean Eng., 121, 251-261 (1995)
[38] Buijsman, M. C.; McWilliams, J. C.; Jackson, C. R., East-west asymmetry in nonlinear internal waves from Luzon Strait, J. Geophys. Res., 115 (2010)
[39] Gerkema, T., Internal and interfacial tides: Beam scattering and local generation of solitary waves, J. Mar. Res., 59, 227-255 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.