zbMATH — the first resource for mathematics

A fast algorithm for the simulation of arterial pulse waves. (English) Zbl 1349.76936
Summary: One-dimensional models have been widely used in studies of the propagation of blood pulse waves in large arterial trees. Under a periodic driving of the heartbeat, traditional numerical methods, such as the Lax-Wendroff method, are employed to obtain asymptotic periodic solutions at large times. However, these methods are severely constrained by the CFL condition due to large pulse wave speed. In this work, we develop a new numerical algorithm to overcome this constraint. First, we reformulate the model system of pulse wave propagation using a set of Riemann variables and derive a new form of boundary conditions at the inlet, the outlets, and the bifurcation points of the arterial tree. The new form of the boundary conditions enables us to design a convergent iterative method to enforce the boundary conditions. Then, after exchanging the spatial and temporal coordinates of the model system, we apply the Lax-Wendroff method in the exchanged coordinate system, which turns the large pulse wave speed from a liability to a benefit, to solve the wave equation in each artery of the model arterial system. Our numerical studies show that our new algorithm is stable and can perform 5 times faster than the traditional implementation of the Lax-Wendroff method under the requirement that the relative numerical error of blood pressure be smaller than one percent, which is much smaller than the modeling error.
76Z05 Physiological flows
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
92-08 Computational methods for problems pertaining to biology
92C35 Physiological flow
Full Text: DOI
[1] Porkert, M., The essentials of Chinese diagnostics, (1983), Acta Medicinae Sinensis Zurich
[2] Conrad, L. I., The western medical tradition: 800 BC to AD 1800, vol. 1, (1995), Cambridge University Press
[3] Blacher, J.; Asmar, R.; Djane, S.; London, G. M.; Safar, M. E., Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients, Hypertension, 33, 1111-1117, (1999)
[4] van de Vosse, F. N.; Stergiopulos, N., Pulse wave propagation in the arterial tree, Annu. Rev. Fluid Mech., 43, 467-499, (2011) · Zbl 1299.76328
[5] Stergiopulos, N.; Young, D. F.; Rogge, T. R., Computer simulation of arterial flow with applications to arterial and aortic stenoses, J. Biomech., 25, 12, 1477-1488, (1992)
[6] Lax, H.; Feinberg, A. W.; Cohen, B. M., Studies of the arterial pulse wave: I. the normal pulse wave and its modification in the presence of human arteriosclerosis, J. Chronic. Dis., 3, 6, 618-631, (1956)
[7] McVeigh, G. E.; Bratteli, C. W.; Morgan, D. J.; Alinder, C. M.; Glasser, S. P.; Finkelstein, S. M.; Cohn, J. N., Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis aging and arterial compliance, Hypertension, 33, 6, 1392-1398, (1999)
[8] Lax, H.; Feinberg, A. W.; Urban, W., Abnormalities of the arterial pulse wave in Young diabetic subjects, Circulation, 20, 6, 1106-1110, (1959)
[9] Nichols, W.; O’Rourke, M.; Vlachopoulos, C., Mcdonald’s blood flow in arteries 6th edition: theoretical, experimental and clinical principles, (2011), CRC Press
[10] Stehouwer, C. D.A.; Henry, R. M.A.; Ferreira, I., Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease, Diabetologia, 51, 4, 527-539, (2008)
[11] Christensen, T.; Neubauer, B., Increased arterial wall stiffness and thickness in medium-sized arteries in patients with insulin-dependent diabetes mellitus, Acta Radiologica, 29, 3, 299-302, (1988)
[12] Shoji, T.; Emoto, M.; Shinohara, K.; Kakiya, R.; Tsujimoto, Y.; Kishimoto, H.; Ishimura, E.; Tabata, T.; Nishizawa, Y., Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease, J. Am. Soc. Nephrol., 12, 10, 2117-2124, (2001)
[13] O’Rourke, M., Mechanical principles in arterial disease, Hypertension, 26, 1, 2-9, (1995)
[14] Johnson, G. A.; Borovetz, H. S.; Anderson, J. L., A model of pulsatile flow in uniform deformable vessel, J. Biomech., 25, 1, 91-100, (1992)
[15] Azer, K.; Peskin, C. S., A one-dimensional model of blood flow in arteries with friction and convection based on the womersley velocity profile, Cardiovascular Engineering, 7, 2, 51-73, (2007)
[16] Hughes, T. J.R.; Lubliner, J., On the one-dimensional theory of blood flow in the larger vessels, Math. Biosci., 18, 1-2, 161-170, (1973) · Zbl 0262.92004
[17] Barnard, A. C.L.; Hunt, W. A.; Timlake, W. P.; Varley, E., A theory of fluid flow in compliant tubes, Biophys. J., 6, 6, 717-724, (1966)
[18] Huo, Y.; Kassab, G. S., Pulsatile blood flow in the entire coronary arterial tree: theory and experiment, Am. J. Physiol., Heart Circ. Physiol., 291, H1074-H1087, (2006)
[19] Huo, Y.; Kassab, G. S., A hybrid one-dimensional/womersley model of pulsatile blood flow in the entire coronary arterial tree, Am. J. Physiol., Heart Circ. Physiol., 292, H2623-H2633, (2007)
[20] Sherwin, S. J.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J. Eng. Math., 47, 3/4, 217-250, (2003) · Zbl 1200.76230
[21] Xiu, D.; Sherwin, S. J., Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network, J. Comput. Phys., 226, 2, 1385-1407, (2007) · Zbl 1121.92023
[22] Alastruey, J.; Parker, K. H.; Sherwin, S. J., Arterial pulse wave haemodynamics, (Anderson, 11th International Conference on Pressure Surges, (2012)), 401-442
[23] Matthys, K. S.; Alastruey, J.; Peiró, J.; Khir, A. W.; Segers, P.; Verdonck, P. R.; Parker, K. H.; Sherwin, S. J., Pulse wave propagation in a model human arterial network: assessment of 1-d numerical simulations against in vitro measurements, J. Biomech., 40, 15, 3476-3486, (2007)
[24] Wan, J.; Steele, B.; Spicer, S. A.; Strohband, S.; Feijóo, G. R.; Hughes, T. J.R.; Taylor, C. A., A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease, Comput. Methods Biomech. Biomed. Eng., 5, 3, 195-206, (2002)
[25] Steele, B. N.; Wan, J.; Ku, J. P.; Hughes, T. J.R.; Taylor, C. A., In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts, IEEE Trans. Biomed. Eng., 50, 6, 649-656, (2003)
[26] Mynard, J. P.; Nithiarasu, P., A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method, Commun. Numer. Methods Eng., 24, 5, 367-417, (2008) · Zbl 1137.92009
[27] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J. Eng. Math., 47, 3-4, 251-276, (2003) · Zbl 1070.76059
[28] Saito, M.; Ikenaga, Y.; Matsukawa, M.; Watanabe, Y.; Asada, T.; Lagrée, P.-Y., One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results, J. Biomech. Eng., 133, 12, 121005, (2011)
[29] Liang, F. Y.; Takagi, S.; Himeno, R.; Liu, H., Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study, J. Biomech., 42, 6, 692-704, (2009)
[30] Eck, V.; Feinberg, J.; Langtangen, H.; Hellevik, L., Stochastic sensitivity analysis for timing and amplitude of pressure waves in the arterial system, Int. J. Numer. Methods Biomed. Eng., 31, 4, (2015)
[31] Willemet, M.; Chowienczyk, P.; Alastruey, J., A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness, Am. J. Physiol., Heart Circ. Physiol., 309, 4, H663-H675, (2015)
[32] Richtmyer, R. D., A survey of difference methods for non-steady fluid dynamics, (1963), National Center for Atmospheric Research
[33] Olufsen, M. S.; Peskin, C. S.; Kim, W. Y.; Pedersen, E. M.; Nadim, A.; Larsen, J., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Ann. Biomed. Eng., 28, 1281-1299, (2000)
[34] Smith, N. P.; Pullan, A. J.; Hunter, P. J., An anatomically based model of transient coronary blood flow in the heart, SIAM J. Appl. Math., 62, 3, 990-1018, (2002) · Zbl 1023.76061
[35] San, O.; Staples, A. E., An improved model for reduced-order physiological fluid flows, J. Mech. Med. Biol., 12, 03, 1250052, (2012)
[36] Itu, L. M.; Suciu, C.; Postelnicu, A.; Moldoveanu, F., Analysis of outflow boundary condition implementations for 1d blood flow models, (E-Health and Bioengineering Conference (EHB), (2011), IEEE), 1-4
[37] Nisam, P. R.; Binu, L. S.; Sukesh, A. K., One dimensional modeling and computation of blood flow and pressure of a stented artery, (2009 3rd International Conference on Bioinformatics and Biomedical Engineering, (2009), IEEE), 1-5
[38] Olufsen, M. S., Modeling the arterial system with reference to an anesthesia simulator, (1998), Department of Mathematics, Roskilde University, Phd thesis
[39] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen differenzengleichungen der mathematischen physik, Math. Ann., 100, 1, 32-74, (1928) · JFM 54.0486.01
[40] Wang, X.; Fullana, J.-M.; Lagrée, P.-Y., Verification and comparison of four numerical schemes for a 1d viscoelastic blood flow model, Comput. Methods Biomech. Biomed. Eng., 18, 15, 1704-1725, (2014)
[41] He, Y.; Liu, H.; Himeno, R., A one-dimensional thermo-fluid model of blood circulation in the human upper limb, Int. J. Heat Mass Transf., 47, 12, 2735-2745, (2004) · Zbl 1079.76685
[42] Rudinger, G., Reviews of current mathematical methods for the analysis of blood flow, (Biomedical Fluid Mechanics Symposium, (1966), ASME Denver, Colorado), 1-33
[43] Taylor, L. A.; Gerrard, J. H., Pressure-radius relationships for elastic tubes and their application to arteries: part 1-theoretical relationships, J. Med. Biol. Eng., 15, 11-17, (1977)
[44] Olufsen, M. S., Structured tree outflow condition for blood flow in larger systemic arteries, Am. J. Physiol., Heart Circ. Physiol., 276, 1, H257-H268, (1999)
[45] Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127, 3, 553-563, (1955)
[46] Westerhof, N.; Stergiopulos, N.; Noble, M. I.M., Snapshots of hemodynamics: an aid for clinical research and graduate education, (2010), Springer Science & Business Media
[47] Oka, S.; Nakai, M., Optimality principle in vascular bifurcation, Biorheology, 24, 737-751, (1987)
[48] Podesser, B. K.; Neumann, F.; Neumann, M.; Schreiner, W.; Wollenek, G.; Mallinger, R., Outer radius-wall thickness ratio, a postmortem quantitative histology in human coronary arteries, Acta Anat., 163, 63-68, (1998)
[49] Mirzaee, M. R.; Ghasemalizadeh, O.; Firoozabadi, B., Simulating of human cardiovascular system and blood vessel obstruction using lumped method, World Acad. Sci., Eng. Technol., 41, 366-374, (2008)
[50] Wang, J. J.; Parker, K. H., Wave propagation in a model of the arterial circulation, J. Biomech., 37, 4, 457-470, (2004)
[51] Gow, B. S., An electrical caliper for measurement of pulsatile arterial diameter changes in vivo, J. Appl. Physiol., 21, 3, 1122-1126, (1966)
[52] Nichols, W. W.; O’Rourke, M. F.; Avolio, A. P.; Yaginuma, T.; Murgo, J. P.; Pepine, C. J.; Conti, C. R., Age-related changes in left ventricular/arterial coupling, (Ventricular/Vascular Coupling, (1987), Springer), 79-114
[53] Du, T.; Hu, D.; Cai, D., Outflow boundary conditions for blood flow in arterial trees, PLoS ONE, 10, 5, (2015)
[54] Van der Geest, R. J.; Buller, V. G.M.; Reiber, J. H.C., Automated quantification of flow velocity and volume in the ascending and descending aorta using flow velocity mapping, (Computers in Cardiology 1995, (1995), IEEE), 29-32
[55] Valdez-Jasso, D.; Haider, M.; Banks, H.; Santana, D. B.; Germán, Y. Z.; Armentano, R. L.; Olufsen, M. S., Analysis of viscoelastic wall properties in ovine arteries, IEEE Trans. Biomed. Eng., 56, 2, 210-219, (2009)
[56] Raghu, R.; Vignon-Clementel, I. E.; Figueroa, C. A.; Taylor, C. A., Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow, J. Biomech. Eng., 133, 8, (2011)
[57] Saito, G. E.; Vander Werff, T. J., The importance of viscoelasticity in arterial blood flow models, J. Biomech., 8, 3, 237-245, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.