×

Periodic epidemic spreading over complex systems: modeling and analysis. (English) Zbl 1400.92554

Summary: It is well observed that some infectious diseases show a feature of periodicity; that is, the disease may prevail during a certain season and vanish afterwards. In the effort of understanding this specific phenomenon, in this paper, we propose a spreading model with a time-variant infectivity function considering both the features of periodicity and agent variability. We apply the modified model to a scale-free network frame with tunable power-law coefficient to find out the characteristics of periodic spreading dynamics. Our work consists of both theoretical derivation and a series of corresponding numerical simulations in order to find out the influence of the parameters of both network topology and the modified model on spreading dynamics in the underlined networks. The experiments prove the success of our model in producing a periodic behavior of spreading, and the results agree well with theoretical calculations.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, S.; Huang, W.; Cattani, C.; Altieri, G., Traffic dynamics on complex networks: a survey, Mathematical Problems in Engineering, 2012, (2012) · Zbl 1264.90031 · doi:10.1155/2012/732698
[2] Dickison, M.; Havlin, S.; Stanley, H. E., Epidemics on interconnected networks, Physical Review E, 85, 6, (2012) · doi:10.1103/physreve.85.066109
[3] Li, M.; Du, X.; Villaruz, A. E.; Diep, B. A.; Wang, D.; Song, Y.; Tian, Y.; Hu, J.; Yu, F.; Lu, Y.; Otto, M., MRSA epidemic linked to a quickly spreading colonization and virulence determinant, Nature Medicine, 18, 5, 816-819, (2012) · doi:10.1038/nm.2692
[4] Cai, C.-R.; Wu, Z.-X.; Guan, J.-Y., Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage, Chaos, Solitons & Fractals, 62-63, 36-43, (2014) · Zbl 1348.92147 · doi:10.1016/j.chaos.2014.04.005
[5] Guo, Q.; Li, L.; Chen, Y.; Yang, Y.; Niu, X., Modeling dynamics of disaster spreading in community networks, Nonlinear Dynamics, 64, 1-2, 157-165, (2011) · Zbl 1280.91140 · doi:10.1007/s11071-010-9854-8
[6] Wang, Z.; Yao, H.; Yang, G.; Du, J., Failure risk propagation and protection schemes in coupled systems, Chaos, Solitons & Fractals, 80, 62-75, (2015) · Zbl 1354.90032 · doi:10.1016/j.chaos.2015.06.005
[7] Lü, L.; Medo, M.; Yeung, C. H.; Zhang, Y.-C.; Zhang, Z.-K.; Zhou, T., Recommender systems, Physics Reports, 519, 1, 1-49, (2012) · doi:10.1016/j.physrep.2012.02.006
[8] Holme, P.; Saramäki, J., Temporal networks, Physics Reports, 519, 3, 97-125, (2012) · doi:10.1016/j.physrep.2012.03.001
[9] Tayur, S.; Ganeshan, R.; Magazine, M., Quantitative Models for Supply Chain Management, 17, (2012), Berlin, Germany: Springer Science & Business Media, Berlin, Germany
[10] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 6684, 440-442, (1998) · Zbl 1368.05139 · doi:10.1038/30918
[11] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512, (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[12] Liu, Q.; Yi, J., The research of the social network evolution based on the evolutionary game theory, Acta Physica Sinica, 62, 23, (2013) · doi:10.7498/aps.62.238902
[13] Wilkinson, R. R.; Sharkey, K. J., Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks, Physical Review E, 89, 2, (2014) · doi:10.1103/PhysRevE.89.022808
[14] Peng, X.-Z.; Yao, H.; Du, J.; Ding, C.; Zhang, Z.-H., Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model, Acta Physica Sinica, 63, 7, (2014) · doi:10.7498/aps.63.078901
[15] Song, Y.-R.; Jiang, G.-P.; Gong, Y.-W., Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy, Chinese Physics B, 22, 4, (2013) · doi:10.1088/1674-1056/22/4/040205
[16] Xia, C. Y.; Liu, Z. X.; Chen, Z. Q.; Yuan, Z. Z., SIRS epidemic model with direct immunization on complex networks, Control and Decision, 23, 4, 468-472, (2008)
[17] Zanette, D. H., Dynamics of rumor propagation on small-world networks, Physical Review E, 65, 4, (2002) · doi:10.1103/physreve.65.041908
[18] Shi, H. J.; Duan, Z. S.; Chen, G. R., An SIS model with infective medium on complex networks, Physica A: Statistical Mechanics and Its Applications, 387, 8-9, 2133-2144, (2008) · doi:10.1016/j.physa.2007.11.048
[19] Li, Z.; Xu, G.-A.; Ban, X.-F.; Zhang, Y.; Hu, Z.-M., Complex information system security risk propagation research based on cellular automata, Acta Physica Sinica, 62, 20, (2013) · doi:10.7498/aps.62.200203
[20] Chu, X.; Zhang, Z.; Guan, J.; Zhou, S., Epidemic spreading with nonlinear infectivity in weighted scale-free networks, Physica A: Statistical Mechanics and Its Applications, 390, 3, 471-481, (2011) · doi:10.1016/j.physa.2010.09.038
[21] Zhu, G.; Fu, X.; Chen, G., Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Communications in Nonlinear Science and Numerical Simulation, 17, 6, 2588-2594, (2012) · Zbl 1243.92048 · doi:10.1016/j.cnsns.2011.08.039
[22] Zhou, Y.-Z.; Liu, Z.-H.; Zhou, J., Periodic wave of epidemic spreading in community networks, Chinese Physics Letters, 24, 2, 581, (2007) · doi:10.1088/0256-307x/24/2/078
[23] Zhang, H.; Zhang, W. Y., Time-delayed information can induce the periodic outbreaks of infectious diseases, Science China Physics, Mechanics and Astronomy, 42, 631-638, (2012)
[24] Holme, P.; Kim, B. J., Growing scale-free networks with tunable clustering, Physical Review E, 65, 2, (2002) · doi:10.1103/physreve.65.026107
[25] Goh, K.-I.; Kahng, B.; Kim, D., Universal behavior of load distribution in scale-free networks, Physical Review Letters, 87, 27, (2001) · doi:10.1103/PhysRevLett.87.278701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.