×

zbMATH — the first resource for mathematics

Image reconstruction using analysis model prior. (English) Zbl 1358.92053
Summary: The analysis model has been previously exploited as an alternative to the classical sparse synthesis model for designing image reconstruction methods. Applying a suitable analysis operator on the image of interest yields a cosparse outcome which enables us to reconstruct the image from undersampled data. In this work, we introduce additional prior in the analysis context and theoretically study the uniqueness issues in terms of analysis operators in general position and the specific 2D finite difference operator. We establish bounds on the minimum measurement numbers which are lower than those in cases without using analysis model prior. Based on the idea of iterative cosupport detection (ICD), we develop a novel image reconstruction model and an effective algorithm, achieving significantly better reconstruction performance. Simulation results on synthetic and practical magnetic resonance (MR) images are also shown to illustrate our theoretical claims.
MSC:
92C55 Biomedical imaging and signal processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Software:
CoSaMP; DLMRI-Lab; PDCO; RecPF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Donoho, D. L., Compressed sensing, IEEE Transactions on Information Theory, 52, 4, 1289-1306, (2006) · Zbl 1288.94016
[2] Candes, E. J.; Tao, T., Decoding by linear programming, IEEE Transactions on Information Theory, 51, 12, 4203-4215, (2005) · Zbl 1264.94121
[3] Candès, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, 2, 489-509, (2006) · Zbl 1231.94017
[4] Bruckstein, A. M.; Donoho, D. L.; Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, 51, 1, 34-81, (2009) · Zbl 1178.68619
[5] Elad, M., Sparse and Redundant Representations—from Theory to Applications in Signal and Image Processing, (2010), New York, NY, USA: Springer, New York, NY, USA · Zbl 1211.94001
[6] Mallat, S., A Wavelet Tour of Signal Processing: The Sparse Way, (2008), New York, NY, USA: Academic Press, New York, NY, USA
[7] Starck, J. L.; Murtagh, F.; Candès, E. J.; Donoho, D. L., Sparse Image and Signal Processing—Wavelets, Curvelets, Morphological Diversity, (2010), Cambridge, UK: Cambridge University Press, Cambridge, UK
[8] Elad, M.; Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15, 12, 3736-3745, (2006)
[9] Elad, M.; Starck, J.-L.; Querre, P.; Donoho, D. L., Simultaneous cartoon and texture image inpainting using morphological component analysis MCA, Applied and Computational Harmonic Analysis, 19, 3, 340-358, (2005) · Zbl 1081.68732
[10] Mallat, S. G.; Zhang, Z., Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, 41, 12, 3397-3415, (1993) · Zbl 0842.94004
[11] Chen, S. S.; Donoho, D. L.; Saunders, M. A., Atomic decomposition by basis pursuit, SIAM Review, 43, 1, 129-159, (2001) · Zbl 0979.94010
[12] Needell, D.; Tropp, J. A., CoSaMP: iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis, 26, 3, 301-321, (2009) · Zbl 1163.94003
[13] Dai, W.; Milenkovic, O., Subspace pursuit for compressive sensing signal reconstruction, IEEE Transactions on Information Theory, 55, 5, 2230-2249, (2009) · Zbl 1367.94082
[14] Donoho, D. L.; Elad, M., Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization, Proceedings of the National Academy of Sciences of the United States of America, 100, 5, 2197-2202, (2003) · Zbl 1064.94011
[15] Ben-Haim, Z.; Eldar, Y. C.; Elad, M., Coherence-based performance guarantees for estimating a sparse vector under random noise, IEEE Transactions on Signal Processing, 58, 10, 5030-5043, (2010) · Zbl 1391.62137
[16] Elad, M.; Milanfar, P.; Rubinstein, R., Analysis versus synthesis in signal priors, Inverse Problems, 23, 3, 947-968, (2007) · Zbl 1138.93055
[17] Nam, S.; Davies, M. E.; Elad, M.; Gribonval, R., The cosparse analysis model and algorithms, Applied and Computational Harmonic Analysis, 34, 1, 30-56, (2013) · Zbl 1261.94018
[18] Vaiter, S.; Peyré, G.; Dossal, C.; Fadili, J., Robust sparse analysis regularization, IEEE Transactions on Information Theory, 59, 4, 2001-2016, (2013) · Zbl 1364.94172
[19] Giryes, R.; Plan, Y.; Vershynin, R., On the effective measure of dimension in the analysis cosparse model, IEEE Transactions on Information Theory, 61, 10, 5745-5753, (2015) · Zbl 1359.94032
[20] Giryes, R.; Needell, D., Near oracle performance and block analysis of signal space greedy methods, Journal of Approximation Theory, 194, 157-174, (2015) · Zbl 1381.94049
[21] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 1–4, 259-268, (1992) · Zbl 0780.49028
[22] Selesnick, I. W.; Figueiredo, M. A. T., Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors, Wavelets XIII
[23] Starck, J.-L.; Candès, E. J.; Donoho, D. L., The curvelet transform for image denoising, IEEE Transactions on Image Processing, 11, 6, 670-684, (2002) · Zbl 1288.94011
[24] Rubinstein, R.; Peleg, T.; Elad, M., Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model, IEEE Transactions on Signal Processing, 61, 3, 661-677, (2013) · Zbl 1393.94416
[25] Genzel, M.; Kutyniok, G., Asymptotic analysis of inpainting via universal shearlet systems, SIAM Journal on Imaging Sciences, 7, 4, 2301-2339, (2014) · Zbl 1307.42033
[26] Liu, Y. P.; De Vos, M.; Van Huffel, S., Compressed sensing of multichannel EEG signals: the simultaneous cosparsity and low-rank optimization, IEEE Transactions on Biomedical Engineering, 62, 8, 2055-2061, (2015)
[27] Jørgensen, J. S.; Kruschel, C.; Lorenz, D. A., Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT, Inverse Problems in Science and Engineering, 23, 8, 1283-1305, (2015) · Zbl 1326.94023
[28] Wang, Y.; Yin, W., Sparse signal reconstruction via iterative support detection, SIAM Journal on Imaging Sciences, 3, 3, 462-491, (2010) · Zbl 1206.68340
[29] Vaswani, N.; Lu, W., Modified-CS: modifying compressive sensing for problems with partially known support, Proceedings of the IEEE International Symposium on Information Theory (ISIT ’09)
[30] Liang, D.; DiBella, E. V. R.; Chen, R.-R.; Ying, L., K-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection, Magnetic Resonance in Medicine, 68, 1, 41-53, (2012)
[31] Lu, Y. M.; Do, M. N., A theory for sampling signals from a union of subspaces, IEEE Transactions on Signal Processing, 56, 6, 2334-2345, (2008) · Zbl 1390.94656
[32] Blumensath, T.; Davies, M. E., Sampling theorems for signals from the union of finite-dimensional linear subspaces, IEEE Transactions on Information Theory, 55, 4, 1872-1882, (2009) · Zbl 1367.94144
[33] Eldar, Y. C.; Mishali, M., Robust recovery of signals from a structured union of subspaces, IEEE Transactions on Information Theory, 55, 11, 5302-5316, (2009) · Zbl 1367.94087
[34] Ma, S.; Yin, W.; Zhang, Y.; Chakraborty, A., An efficient algorithm for compressed MR imaging using total variation and wavelets, Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’08)
[35] Wang, Y.; Yang, J.; Yin, W.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1, 3, 248-272, (2008) · Zbl 1187.68665
[36] Yang, J.; Zhang, Y.; Yin, W., A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal on Selected Topics in Signal Processing, 4, 2, 288-297, (2010)
[37] Candès, E. J.; Eldar, Y. C.; Needell, D.; Randall, P., Compressed sensing with coherent and redundant dictionaries, Applied and Computational Harmonic Analysis, 31, 1, 59-73, (2011) · Zbl 1215.94026
[38] Kabanava, M.; Rauhut, H.; Boche, H.; Calderbank, R.; Kutyniok, G.; Vybíral, J., Cosparsity in compressed sensing, Compressed Sensing and Its Applications, 315-339, (2015), New York, NY, USA: Springer, New York, NY, USA · Zbl 1333.94020
[39] Lustig, M.; Donoho, D.; Pauly, J. M., Sparse MRI: the application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58, 6, 1182-1195, (2007)
[40] Huang, J.; Yang, F., Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation, Proceedings of the 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI ’12)
[41] Han, Y.; Du, H.; Mei, W.; Fang, L., MR image reconstruction with block sparsity and iterative support detection, Magnetic Resonance Imaging, 33, 5, 624-634, (2015)
[42] Ravishankar, S.; Bresler, Y., MR image reconstruction from highly undersampled k-space data by dictionary learning, IEEE Transactions on Medical Imaging, 30, 5, 1028-1041, (2011)
[43] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612, (2004)
[44] Hansen, P. C.; O’Leary, D. P., The use of the \(L\) -curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14, 6, 1487-1503, (1993) · Zbl 0789.65030
[45] Ramani, S.; Blu, T.; Unser, M., Monte-carlo sure: a black-box optimization of regularization parameters for general denoising algorithms, IEEE Transactions on Image Processing, 17, 9, 1540-1554, (2008)
[46] Ramani, S.; Liu, Z.; Rosen, J.; Nielsen, J.-F.; Fessler, J. A., Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods, IEEE Transactions on Image Processing, 21, 8, 3659-3672, (2012) · Zbl 1373.94340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.