×

Effective action for cosmological scalar fields at finite temperature. (English) Zbl 1388.83901

Summary: Scalar fields appear in many theories beyond the Standard Model of particle physics. In the early universe, they are exposed to extreme conditions, including high temperature and rapid cosmic expansion. Understanding their behavior in this environment is crucial to understand the implications for cosmology. We calculate the finite temperature effective action for the field expectation value in two particularly important cases, for damped oscillations near the ground state and for scalar fields with a flat potential. We find that the behavior in both cases can in good approximation be described by a complex valued effective potential that yields Markovian equations of motion. Near the potential minimum, we recover the solution to the well-known Langevin equation. For large field values we find a very different behavior, and our result for the damping coefficient differs from the expressions frequently used in the literature. We illustrate our results in a simple scalar model, for which we give analytic approximations for the effective potential and damping coefficient. We also provide various expressions for loop integrals at finite temperature that are useful for future calculations in other models.

MSC:

83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M.R. Douglas, Calabi-Yau metrics and string compactification, arXiv:1503.02899 [INSPIRE]. · Zbl 1329.14080
[2] F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci.57 (2007) 119 [hep-th/0701050] [INSPIRE]. · doi:10.1146/annurev.nucl.57.090506.123042
[3] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett.B 91 (1980) 99 [INSPIRE]. · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[4] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev.D 23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[5] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett.B 108 (1982) 389 [INSPIRE]. · doi:10.1016/0370-2693(82)91219-9
[6] C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett.B 458 (1999) 209 [hep-th/9904075] [INSPIRE].
[7] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. · doi:10.1103/PhysRevLett.38.1440
[8] S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP08 (2007) 010 [arXiv:0705.2425] [INSPIRE]. · doi:10.1088/1126-6708/2007/08/010
[9] A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP07 (2009) 086 [arXiv:0904.0353] [INSPIRE]. · doi:10.1088/1126-6708/2009/07/086
[10] H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP07 (2011) 029 [arXiv:1101.4665] [INSPIRE]. · Zbl 1298.81491 · doi:10.1007/JHEP07(2011)029
[11] J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys.B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE]. · Zbl 1229.81329 · doi:10.1016/j.nuclphysb.2011.09.010
[12] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev.D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
[13] C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys.B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
[14] M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev.D 62 (2000) 041302 [astro-ph/0003350] [INSPIRE].
[15] P. Arias et al., WISPy cold dark matter, JCAP06 (2012) 013 [arXiv:1201.5902] [INSPIRE]. · doi:10.1088/1475-7516/2012/06/013
[16] C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys.B 302 (1988) 668 [INSPIRE]. · doi:10.1016/0550-3213(88)90193-9
[17] C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett.85 (2000) 4438 [astro-ph/0004134] [INSPIRE].
[18] J.U. Kang, V. Vanchurin and S. Winitzki, Attractor scenarios and superluminal signals in k-essence cosmology, Phys. Rev.D 76 (2007) 083511 [arXiv:0706.3994] [INSPIRE].
[19] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys.D 15 (2006) 1753 [hep-th/0603057] [INSPIRE]. · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[20] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[21] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[22] M. Novello and S.E.P. Bergliaffa, Bouncing cosmologies, Phys. Rept.463 (2008) 127 [arXiv:0802.1634] [INSPIRE]. · doi:10.1016/j.physrep.2008.04.006
[23] R.H. Brandenberger, The matter bounce alternative to inflationary cosmology, arXiv:1206.4196 [INSPIRE].
[24] R. Kallosh, J.U. Kang, A.D. Linde and V. Mukhanov, The new ekpyrotic ghost, JCAP04 (2008) 018 [arXiv:0712.2040] [INSPIRE]. · doi:10.1088/1475-7516/2008/04/018
[25] D. Battefeld and P. Peter, A critical review of classical bouncing cosmologies, Phys. Rept.571 (2015) 1 [arXiv:1406.2790] [INSPIRE]. · Zbl 1370.83107 · doi:10.1016/j.physrep.2014.12.004
[26] P.H. Loewenfeld, J.U. Kang, N. Moeller and I. Sachs, Bouncing universe and non-BPS branes, JHEP04 (2010) 072 [arXiv:0906.3242] [INSPIRE]. · Zbl 1272.83102 · doi:10.1007/JHEP04(2010)072
[27] C. Li and Y.-K.E. Cheung, The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos, JCAP07 (2014) 008 [arXiv:1401.0094] [INSPIRE]. · doi:10.1088/1475-7516/2014/07/008
[28] M. Drewes, S. Mendizabal and C. Weniger, The Boltzmann equation from quantum field theory, Phys. Lett.B 718 (2013) 1119 [arXiv:1202.1301] [INSPIRE]. · Zbl 1332.82060 · doi:10.1016/j.physletb.2012.11.046
[29] M. Morikawa, Classical fluctuations in dissipative quantum systems, Phys. Rev.D 33 (1986) 3607 [INSPIRE].
[30] C. Greiner and S. Leupold, Stochastic interpretation of Kadanoff-Baym equations and their relation to Langevin processes, Annals Phys.270 (1998) 328 [hep-ph/9802312] [INSPIRE]. · Zbl 0927.60082
[31] J. Yokoyama, Fate of oscillating scalar fields in the thermal bath and their cosmological implications, Phys. Rev.D 70 (2004) 103511 [hep-ph/0406072] [INSPIRE].
[32] D. Boyanovsky, K. Davey and C.M. Ho, Particle abundance in a thermal plasma: quantum kinetics vs. Boltzmann equation, Phys. Rev.D 71 (2005) 023523 [hep-ph/0411042] [INSPIRE].
[33] A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Nonequilibrium dynamics of scalar fields in a thermal bath, Annals Phys.324 (2009) 1234 [arXiv:0812.1934] [INSPIRE]. · Zbl 1164.81016 · doi:10.1016/j.aop.2009.01.001
[34] D. Boyanovsky, Effective field theory out of equilibrium: Brownian quantum fields, New J. Phys.17 (2015) 063017 [arXiv:1503.00156] [INSPIRE]. · Zbl 1452.82007 · doi:10.1088/1367-2630/17/6/063017
[35] K. Mukaida, K. Nakayama and M. Takimoto, Fate of Z2symmetric scalar field, JHEP12 (2013) 053 [arXiv:1308.4394] [INSPIRE]. · Zbl 1342.83542 · doi:10.1007/JHEP12(2013)053
[36] J. Berges and S. Borsányi, Range of validity of transport equations, Phys. Rev.D 74 (2006) 045022 [hep-ph/0512155] [INSPIRE].
[37] M.L. Bellac, Thermal field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2000) [ISBN-10:0521654777] [ISBN-13:978-0521654777] [INSPIRE].
[38] M. Drewes, Novel collective excitations in a hot scalar field theory, Phys. Lett.B 732 (2014) 127 [arXiv:1311.6641] [INSPIRE]. · Zbl 1360.81252 · doi:10.1016/j.physletb.2014.03.019
[39] A. Berera and R.O. Ramos, Dynamics of interacting scalar fields in expanding space-time, Phys. Rev.D 71 (2005) 023513 [hep-ph/0406339] [INSPIRE].
[40] T. Brunier, V.K. Onemli and R.P. Woodard, Two loop scalar self-mass during inflation, Class. Quant. Grav.22 (2005) 59 [gr-qc/0408080] [INSPIRE]. · Zbl 1060.83060
[41] B. Garbrecht, G. Rigopoulos and Y. Zhu, Infrared correlations in de Sitter space: field theoretic versus stochastic approach, Phys. Rev.D 89 (2014) 063506 [arXiv:1310.0367] [INSPIRE].
[42] F. Gautier and J. Serreau, Infrared dynamics in de Sitter space from Schwinger-Dyson equations, Phys. Lett.B 727 (2013) 541 [arXiv:1305.5705] [INSPIRE]. · Zbl 1331.81222 · doi:10.1016/j.physletb.2013.10.072
[43] M. Herranen, A. Osland and A. Tranberg, Quantum corrections to inflaton dynamics, the semi-classical approach and the semi-classical limit, arXiv:1503.07661 [INSPIRE].
[44] J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K.A. Olive, Inflationary fluctuations, entropy generation and baryogenesis, Phys. Lett.B 191 (1987) 343 [INSPIRE]. · doi:10.1016/0370-2693(87)90620-4
[45] S. Dodelson, The postinflationary era and baryogenesis, Phys. Rev.D 37 (1988) 2059 [INSPIRE].
[46] K. Enqvist and K.J. Eskola, Thermalization in the early universe, Mod. Phys. Lett.A 5 (1990) 1919 [INSPIRE]. · doi:10.1142/S0217732390002171
[47] K. Enqvist and J. Sirkka, Chemical equilibrium in QCD gas in the early universe, Phys. Lett.B 314 (1993) 298 [hep-ph/9304273] [INSPIRE].
[48] J. McDonald, Reheating temperature and inflaton mass bounds from thermalization after inflation, Phys. Rev.D 61 (2000) 083513 [hep-ph/9909467] [INSPIRE].
[49] S. Davidson and S. Sarkar, Thermalization after inflation, JHEP11 (2000) 012 [hep-ph/0009078] [INSPIRE].
[50] J. Berges, S. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett.93 (2004) 142002 [hep-ph/0403234] [INSPIRE].
[51] J. Berges, D. Gelfand and J. Pruschke, Quantum theory of fermion production after inflation, Phys. Rev. Lett.107 (2011) 061301 [arXiv:1012.4632] [INSPIRE]. · doi:10.1103/PhysRevLett.107.061301
[52] A. Mazumdar and B. Zaldivar, Quantifying the reheating temperature of the universe, Nucl. Phys.B 886 (2014) 312 [arXiv:1310.5143] [INSPIRE]. · Zbl 1325.83027 · doi:10.1016/j.nuclphysb.2014.07.001
[53] K. Harigaya and K. Mukaida, Thermalization after/during reheating, JHEP05 (2014) 006 [arXiv:1312.3097] [INSPIRE]. · doi:10.1007/JHEP05(2014)006
[54] K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark matter production in late time reheating, Phys. Rev.D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].
[55] A. Berera, I.G. Moss and R.O. Ramos, Warm inflation and its microphysical basis, Rept. Prog. Phys.72 (2009) 026901 [arXiv:0808.1855] [INSPIRE]. · doi:10.1088/0034-4885/72/2/026901
[56] G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys.D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE]. · doi:10.1142/S0218271815300220
[57] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.2 (1961) 407 [INSPIRE]. · Zbl 0098.43503 · doi:10.1063/1.1703727
[58] P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 1, J. Math. Phys.4 (1963) 1 [INSPIRE]. · Zbl 0126.24401 · doi:10.1063/1.1703883
[59] P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 2, J. Math. Phys.4 (1963) 12 [INSPIRE]. · doi:10.1063/1.1703879
[60] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [Sov. Phys. JETP20 (1965) 1018] [INSPIRE].
[61] J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc.739 (2005) 3 [hep-ph/0409233] [INSPIRE].
[62] K.-C. Chou, Z.-B. Su, B.-L. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rept.118 (1985) 1 [INSPIRE]. · doi:10.1016/0370-1573(85)90136-X
[63] M. Drewes, On the role of quasiparticles and thermal masses in nonequilibrium processes in a plasma, arXiv:1012.5380 [INSPIRE].
[64] L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev.D 9 (1974) 3320 [INSPIRE].
[65] R. Jackiw, Functional evaluation of the effective potential, Phys. Rev.D 9 (1974) 1686 [INSPIRE].
[66] E. Calzetta and B.L. Hu, Closed time path functional formalism in curved space-time: application to cosmological back reaction problems, Phys. Rev.D 35 (1987) 495 [INSPIRE].
[67] E. Calzetta and B.L. Hu, Nonequilibrium quantum fields: closed time path effective action, Wigner function and Boltzmann equation, Phys. Rev.D 37 (1988) 2878 [INSPIRE].
[68] E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys.B 337 (1990) 569 [INSPIRE]. · doi:10.1016/0550-3213(90)90508-B
[69] L.P. Kadanoff and G. Baym, Quantum statistical mechanics, Benjamin, New York U.S.A. (1962). · Zbl 0115.22901
[70] B. Garbrecht and M. Garny, Finite width in out-of-equilibrium propagators and kinetic theory, Annals Phys.327 (2012) 914 [arXiv:1108.3688] [INSPIRE]. · Zbl 1241.83078 · doi:10.1016/j.aop.2011.10.005
[71] Y. Miyamoto, H. Motohashi, T. Suyama and J. Yokoyama, Langevin description of gauged scalar fields in a thermal bath, Phys. Rev.D 89 (2014) 085037 [arXiv:1308.4794] [INSPIRE].
[72] S. Bartrum, A. Berera and J.G. Rosa, Fluctuation-dissipation dynamics of cosmological scalar fields, Phys. Rev.D 91 (2015) 083540 [arXiv:1412.5489] [INSPIRE].
[73] G. Rigopoulos, Fluctuation-dissipation and equilibrium for scalar fields in de Sitter, arXiv:1305.0229 [INSPIRE].
[74] F. Gautier and J. Serreau, On the Langevin description of nonequilibrium quantum fields, Phys. Rev.D 86 (2012) 125002 [arXiv:1209.1827] [INSPIRE].
[75] M. Drewes and J.U. Kang, The kinematics of cosmic reheating, Nucl. Phys.B 875 (2013) 315 [Erratum ibid.B 888 (2014) 284] [arXiv:1305.0267] [INSPIRE]. · Zbl 1282.83067
[76] M. Drewes, On finite density effects on cosmic reheating and moduli decay and implications for dark matter production, JCAP11 (2014) 020 [arXiv:1406.6243] [INSPIRE]. · doi:10.1088/1475-7516/2014/11/020
[77] M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion quantum field interactions, JCAP09 (2011) 033 [arXiv:1008.1929] [INSPIRE]. · doi:10.1088/1475-7516/2011/09/033
[78] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in low-temperature warm inflation, JCAP01 (2013) 016 [arXiv:1207.0445] [INSPIRE]. · doi:10.1088/1475-7516/2013/01/016
[79] R.L. Kobes and G.W. Semenoff, Discontinuities of Green functions in field theory at finite temperature and density. 2, Nucl. Phys.B 272 (1986) 329 [INSPIRE]. · doi:10.1016/0550-3213(86)90006-4
[80] R.L. Kobes and G.W. Semenoff, Discontinuities of Green functions in field theory at finite temperature and density, Nucl. Phys.B 260 (1985) 714 [INSPIRE]. · doi:10.1016/0550-3213(85)90056-2
[81] P.F. Bedaque, A.K. Das and S. Naik, Cutting rules at finite temperature, Mod. Phys. Lett.A 12 (1997) 2481 [hep-ph/9603325] [INSPIRE].
[82] P.V. Landshoff, Simple physical approach to thermal cutting rules, Phys. Lett.B 386 (1996) 291 [hep-ph/9606426] [INSPIRE].
[83] F. Gelis, Cutting rules in the real time formalisms at finite temperature, Nucl. Phys.B 508 (1997) 483 [hep-ph/9701410] [INSPIRE].
[84] J. Yokoyama and A.D. Linde, Is warm inflation possible?, Phys. Rev.D 60 (1999) 083509 [hep-ph/9809409] [INSPIRE].
[85] A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett.B 96 (1980) 289 [INSPIRE]. · doi:10.1016/0370-2693(80)90769-8
[86] E. Braaten, Solution to the perturbative infrared catastrophe of hot gauge theories, Phys. Rev. Lett.74 (1995) 2164 [hep-ph/9409434] [INSPIRE].
[87] D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys.53 (1981) 43 [INSPIRE]. · doi:10.1103/RevModPhys.53.43
[88] A. Berera and R.O. Ramos, The affinity for scalar fields to dissipate, Phys. Rev.D 63 (2001) 103509 [hep-ph/0101049] [INSPIRE].
[89] K. Mukaida and K. Nakayama, Dissipative effects on reheating after inflation, JCAP03 (2013) 002 [arXiv:1212.4985] [INSPIRE]. · doi:10.1088/1475-7516/2013/03/002
[90] K. Mukaida and K. Nakayama, Dynamics of oscillating scalar field in thermal environment, JCAP01 (2013) 017 [arXiv:1208.3399] [INSPIRE]. · doi:10.1088/1475-7516/2013/01/017
[91] K. Enqvist, R.N. Lerner and S. Rusak, Reheating dynamics affects non-perturbative decay of spectator fields, JCAP11 (2013) 034 [arXiv:1308.3321] [INSPIRE].
[92] R. Lerner and A. Tranberg, Thermal blocking of preheating, JCAP15 (2015) 014 [arXiv:1502.01718] [INSPIRE]. · doi:10.1088/1475-7516/2015/04/014
[93] C.M. Ho and R.J. Scherrer, Cosmological particle decays at finite temperature, Phys. Rev.D 92 (2015) 025019 [arXiv:1503.03534] [INSPIRE].
[94] J. Martin, C. Ringeval and V. Vennin, Observing inflationary reheating, Phys. Rev. Lett.114 (2015) 081303 [arXiv:1410.7958] [INSPIRE]. · doi:10.1103/PhysRevLett.114.081303
[95] N. Kitajima, D. Langlois, T. Takahashi, T. Takesako and S. Yokoyama, Thermal effects and sudden decay approximation in the curvaton scenario, JCAP10 (2014) 032 [arXiv:1407.5148] [INSPIRE]. · doi:10.1088/1475-7516/2014/10/032
[96] J. Meyers and E.R.M. Tarrant, Perturbative reheating after multiple-field inflation: the impact on primordial observables, Phys. Rev.D 89 (2014) 063535 [arXiv:1311.3972] [INSPIRE].
[97] P.S.B. Dev, A. Mazumdar and S. Qutub, Connection between dark matter abundance and primordial tensor perturbations, arXiv:1412.3041 [INSPIRE].
[98] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of reheating after inflation: a review, Int. J. Mod. Phys.D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE]. · Zbl 1308.83155
[99] J.L. Cook, E. Dimastrogiovanni, D.A. Easson and L.M. Krauss, Reheating predictions in single field inflation, JCAP04 (2015) 047 [arXiv:1502.04673] [INSPIRE]. · doi:10.1088/1475-7516/2015/04/047
[100] V. Domcke and J. Heisig, Constraints on the reheating temperature from sizable tensor modes, arXiv:1504.00345 [INSPIRE].
[101] A.L. Erickcek, The dark matter annihilation boost from low-temperature reheating, arXiv:1504.03335 [INSPIRE].
[102] T. Rehagen and G.B. Gelmini, Low reheating temperatures in monomial and binomial inflationary potentials, JCAP06 (2015) 039 [arXiv:1504.03768] [INSPIRE]. · doi:10.1088/1475-7516/2015/06/039
[103] R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev.D 45 (1992) 4695 [Erratum ibid.D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
[104] M. Gleiser and R.O. Ramos, Microphysical approach to nonequilibrium dynamics of quantum fields, Phys. Rev.D 50 (1994) 2441 [hep-ph/9311278] [INSPIRE].
[105] W. Buchmüller and A. Jakovac, Classical statistical mechanics and Landau damping, Phys. Lett.B 407 (1997) 39 [hep-ph/9705452] [INSPIRE].
[106] A. Berera, M. Gleiser and R.O. Ramos, Strong dissipative behavior in quantum field theory, Phys. Rev.D 58 (1998) 123508 [hep-ph/9803394] [INSPIRE].
[107] I.G. Moss and C. Xiong, Dissipation coefficients for supersymmetric inflatonary models, hep-ph/0603266 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.