×

Variable-order fractional description of compression deformation of amorphous glassy polymers. (English) Zbl 1467.74018

Summary: In this paper, the variable order fractional constitutive model is adopted to describe the compression deformation of amorphous glassy polymers. In order to keep the fractional order within the definition of viscoelasticity, a three-regions-fitting-method is proposed. By using this, the value of fractional order is found to be a constant in viscoelastic region, and decreases linearly in both strain softening and strain hardening regions. The corresponding mechanical property evolution revealed by fractional order is proved to be reasonable based on the molecular chains conflict theory. And a comparison study is conducted to show the advantage of using the variable order fractional model with higher accuracy and fewer parameters. It is then concluded that the variable order fractional calculus is an efficient tool to predict the compression deformation of amorphous glassy polymers.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
82D60 Statistical mechanics of polymers
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Matter 9:15-34 · doi:10.1007/s11043-005-3442-1
[2] Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999-1012 · Zbl 1366.74073 · doi:10.1007/s00466-012-0783-x
[3] Coimbra CF (2003) Mechanics with variable-order differential operators. Ann Phys-Berl 12:692-703 · Zbl 1103.26301 · doi:10.1002/andp.200310032
[4] Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29:57-98 · Zbl 1018.93007 · doi:10.1023/A:1016586905654
[5] Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91:470-483 · Zbl 1203.94060 · doi:10.1016/j.sigpro.2010.04.006
[6] Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85:1815-1823 · Zbl 1349.65505 · doi:10.1007/s11071-016-2797-y
[7] Ramirez LE, Coimbra CF (2007) A variable order constitutive relation for viscoelasticity. Ann Phys-Berl 16:543-552 · Zbl 1159.74008 · doi:10.1002/andp.200710246
[8] Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131:763-767 · doi:10.1061/(ASCE)0733-9399(2005)131:7(763)
[9] Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl Math Model 40:398-406 · Zbl 1443.74084 · doi:10.1016/j.apm.2015.04.055
[10] Sudarkodi V, Basu S (2014) Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int J Plastic 56:139-155 · doi:10.1016/j.ijplas.2013.11.007
[11] Poluektov M, Van Dommelen JAW, Govaert LE, Yakimets I, Geers MGD (2013) Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate. Model Simul Mater Sci Eng 21:5015 · doi:10.1088/0965-0393/21/8/085015
[12] Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat J (2015) Correlation of structure and mechanical response in solid-like polymers. J Phys: Condens Matter 27:194131
[13] Mahajan DK, Basu S (2010) Investigations into the applicability of rubber elastic analogy to hardening in glassy polymers. Model Simul Mater Sci 18:025001 · doi:10.1088/0965-0393/18/2/025001
[14] Nada H, Hara H, Tadano Y, Shizawa K (2015) Molecular chain plasticity model similar to crystal plasticity theory based on change in local free volume and FE simulation of glassy polymer. Int J Mech Sci 93:120-135 · doi:10.1016/j.ijmecsci.2014.12.018
[15] Jancar J, Hoy RS, Jancarova E, Zidek J (2015) Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 63:196-207 · doi:10.1016/j.polymer.2015.03.001
[16] Van Melick H, Govaert LE, Raas B, Nauta WJ, Meijer H (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44:1171-1179 · doi:10.1016/S0032-3861(02)00863-7
[17] Vorselaars B, Lyulin AV, Michels M (2009) Microscopic mechanisms of strain hardening in glassy polymers. Macromolecules 42:5829-5842 · doi:10.1021/ma802709d
[18] Van Melick H, Govaert LE, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493-2502 · doi:10.1016/S0032-3861(03)00112-5
[19] Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44:3487-3500 · doi:10.1002/polb.21012
[20] Nguyen V, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192-216 · doi:10.1016/j.ijsolstr.2016.06.008
[21] Voyiadjis GZ, Samadi-Dooki A (2016) Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J Appl Phys 119:225104 · doi:10.1063/1.4953355
[22] Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39:39-52 · doi:10.1016/j.mechmat.2006.02.006
[23] Zaïri F, Naït-Abdelaziz M, Gloaguen J, Lefebvre J (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Int J Plastic 27:25-51 · doi:10.1016/j.ijplas.2010.03.007
[24] Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre J (2010) Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly (methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction. Model Simul Mater Sci 18:055004 · doi:10.1088/0965-0393/18/5/055004
[25] Voyiadjis GZ, Shojaei A, Li G (2012) A generalized coupled viscoplastic—viscodamage—viscohealing theory for glassy polymers. Int J Plast 28:21-45 · doi:10.1016/j.ijplas.2011.05.012
[26] Bouvard J, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168-193 · doi:10.1016/j.ijplas.2012.10.005
[27] Klompen E, Engels T, Govaert LE, Meijer H (2005) Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997-7008 · doi:10.1021/ma050498v
[28] Kontou E, Katsourinis S (2016) Application of a fractional model for simulation of the viscoelastic functions of polymers. J Appl Polym Sci 133:43505 · doi:10.1002/app.43505
[29] Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material model for polymers. Comput Mater Sci 50:2938-2949 · doi:10.1016/j.commatsci.2011.05.011
[30] Xiao R, Sun HG, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Nonlinear Mech 93:7-14 · doi:10.1016/j.ijnonlinmec.2017.04.019
[31] Almeida R, Torres DF (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J 2013:915437
[32] Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic – plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331-1356 · Zbl 1119.74328 · doi:10.1016/j.ijsolstr.2005.04.016
[33] Duan Y, Saigal A, Greif R, Zimmerman MA (2001) A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym Eng Sci 41:1322-1328 · doi:10.1002/pen.10832
[34] Boyce MC, Arruda EM (1990) An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288-1298 · doi:10.1002/pen.760302005
[35] Yu P, Yao X, Han Q, Zang S, Gu Y (2014) A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures. Polymer 55:6577-6593 · doi:10.1016/j.polymer.2014.09.071
[36] Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938-7954 · Zbl 1167.74352 · doi:10.1016/j.ijsolstr.2007.05.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.