×

Asymptotics for the local time of a strongly dependent vector-valued Gaussian random field. (English) Zbl 0874.60046

The authors study the local time of normalized vector-valued Gaussian random fields \(X=(X_t; t\in\mathbb{R}^d)\), \(X_t\in\mathbb{R}^p\). Extending a result of S. M. Berman [Stochastic Processes Appl. 12, 1-26 (1981; Zbl 0471.60082)] they obtain a series expansion of the local time \(\ell_X\) in terms of multidimensional Hermite polynomials. Moreover, for \(X\) stationary with a covariance matrix of long range dependence type, the authors apply a theorem of M. V. Sanchez de Naranjo [J. Multivariate Anal. 44, No. 2, 227-255 (1993; Zbl 0770.60025)] to deduce, from this series expansion, the asymptotic behaviour of the local time \(\ell_X([0,\tau]^d,x)\) \((x\in\mathbb{R}^p)\) as \(\tau\to\infty\), in terms of random spectral measures associated to \(X\). Finally, the authors consider a sufficiently regular bijective transform \(Y\) of \(X\) (\(X\) stationary) and give series expansions of the kernel estimates for the marginal density of \(Y\). This extends a result of M. Rosenblatt [NSF-CBMS Regional Conference Series in Probability and Statistics 3 (1991)].
Reviewer: M.Dozzi (Nancy)

MSC:

60G60 Random fields
60F05 Central limit and other weak theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Ango Nze and P. Doukhan, Non parametric minimax estimation in a weakly dependent framework,Probab. and Theor. Statist. (1996). · Zbl 0893.62024
[2] M. Arcones,Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors, Preprint University of Utah, Salt Lake City (1993).
[3] S. M. Berman, Local times and sample function properties of stationary Gaussian processes,Trans. Amer. Math. Soc.,137 (1969), 277–299. · Zbl 0184.40801
[4] S. M. Berman, Local times of stochastic processes with positive definite bivariate densities.Stoch. Proc. and their Appl.,12 (1982), 1–26. · Zbl 0471.60082
[5] J. V. Castellana and M. R. Leadbetter, On smoothed probability density estimation for stationary processes,Stoch. Proc. and their Appl.,21 (1986), 179–193. · Zbl 0588.62156
[6] D. Chambers and D. Slud, Central limit theorems for non-linear functionals of stationary Gaussian processes,Prob. Th. Rel. Fields,80 (1989), 323–346. · Zbl 0687.60024
[7] Yu. A. Davydov, Local times for random processes,Theor. Probab. Appl.,21 (1976), 171–178. · Zbl 0403.60055
[8] Yu. A. Davydov, Local times for multiparameter random processes,Theor. Probab. Appl.,23 (1978), 573–583. · Zbl 0421.60070
[9] Yu. A. Davydov and L. Rozin, On sojourn times for functions and random processes,Theor. Probab. Appl.,23 (1978), 633–637. · Zbl 0422.60056
[10] R. L. Dobrushin and P. Major, Non central limit theorems for non-linear functional of Gaussian fields,Z. Wahrsch. verve. Geb.,50 (1979), 27–52. · Zbl 0397.60034
[11] R. Fox and M. S. Taqqu, Multiple stochastic integrals with dependent integrators,J. of Mult. Anal.,21 (1987), 105–127. · Zbl 0649.60064
[12] D. Geman and J. Horowitz, Occupation densities,Ann. of Probab.,8 (1980), 1–67. · Zbl 0499.60081
[13] M. Maejima,Sojourn of multidimensional Gaussian processes, in dependence in probability and statistics: A survey of recents result, Ed. E. Eberlein, M. Taqqu. Birkhauser, (1986), pp 91–108.
[14] M. Rosenblatt,Stochastic curve estimation, NSF-CBMS Regional Conference Series in Probability and Statistics,3. (1991).
[15] M. V. Sanchez de Naranjo, Non central limit theorems for non-linear functionals ofk Gaussian random fields,J. Mult. Anal.,44 (1993), 227–255. · Zbl 0770.60025
[16] G. Szegö,Orthogonal Polynomials. Amer. Math. Soc. Coll. Publ. 23 (1959).
[17] M. S. Taqqu, Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit long range dependence,Z. Wahrsch. verve. Geb.,40 (1977), 203–238. · Zbl 0358.60048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.