×

A wildland fire model with data assimilation. (English) Zbl 1155.80005

The authors here present tools accounting for the simulation of ground layer fire. They start from the coupled non-steady system \(dT/dt=\nabla (k\nabla T)-\upsilon \nabla T+A(Se^{-B(T-T_{a})}-C(T-T_{a})\), \( dS/dt=-C_{S}Se^{-B(T-T_{a})}\), which describes the evolutions of the temperature and of the fuel supply mass fraction. Initial known values are given. This system involves several physical parameters which have to be determined. The authors show how some of these coefficients can be deduced from observations on the wildland fire, that is fire in a ground layer with unspecified thickness \(h\).
The main part of the paper is devoted to the description of the notion of data assimilation in order to build a precise numerical simulation of the forest fire. The authors describe the notion of ensemble Kalman filter as a collection of independent simulations. This tool has already been applied with success in different other contexts. Within the present fire context, the authors show how the ensemble Kalman filter can be applied within the current context in a 2D situation. The authors first calibrate the values of some parameters in a 1D situation. They also quote some other values from the literature. In the 2D situation, the authors use central finite differences with respect to the space variables and an explicit Euler method with respect to the time variable. The numerical simulations are obtained introducing additive random perturbations to a comparison solution.
The authors present numerical simulations of the ensemble mean and of the ensemble variance. The paper ends with a long list of references.

MSC:

80A25 Combustion
80A32 Chemically reacting flows
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

EnKF; DDDAS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Albini, F. A., A model for fire spread in wildland fuels by radiation—a model including fuel cooling by convection, Combust. Sci. Technol., 45, 101-113 (1986)
[2] F.A. Albini, PROGRAM BURNUP: a simulation model of the burning of large woody natural fuels, Final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State Univ., Mechanical Engineering Dept., 1994.; F.A. Albini, PROGRAM BURNUP: a simulation model of the burning of large woody natural fuels, Final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State Univ., Mechanical Engineering Dept., 1994.
[3] Albini, F. A.; Reinhardt, E. D., Improved calibration of a large fuel burnout model, Int. J. Wildland Fire, 7, 21-28 (1997)
[4] Anderson, J. L., An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884-2903 (1999)
[5] Anderson, J. L.; Anderson, S. L., A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741-2758 (1999)
[6] Asensio, M. I.; Ferragut, L., Total error estimates of mixed finite element methods for nonlinear reaction-diffusion equations, Neural Parallel Sci. Comput., 8, 2, 169-189 (2000) · Zbl 0989.65106
[7] Asensio, M. I.; Ferragut, L., On a wildland fire model with radiation, Int. J. Numer. Meth. Eng., 54, 137-157 (2002) · Zbl 1098.76644
[8] Asensio, M. I.; Russo, A.; Sangalli, G., The residual-free bubble numerical method with quadratic elements, Mathematical Models and Methods in Applied Sciences, 14, 5, 641-661 (2004) · Zbl 1077.65118
[9] Baines, P. G., Physical mechanisms for the propagation of surface fires, Math. Comput. Model., 13, 83-94 (1990)
[10] Balbi, J. H.; Santoni, P. A.; Dupuy, J. L., Dynamic modelling of fire spread across a fuel bed, International J. of Wildland Fire, 9, 4, 275-284 (1999)
[11] Beezley, J. D.; Mandel, J., Morphing ensemble Kalman filters, Tellus, 60A, 131-140 (2008)
[12] Bengtsson, T.; Snyder, C.; Nychka, D., Toward a nonlinear ensemble filter for high dimensional systems, J. Geophys. Res.-Atmos., 108, D24 (2003), STS 2-1-10
[13] H. Berestycki, B. Larrouturou, J.-M. Roquejoffre, Mathematical investigation of the cold boundary difficulty in flame propagation theory, in: P.C. Fife, A. LiñÁn, F. Williams (Eds.), Dynamical Issues in Combustion Theory (Minneapolis, MN, 1989), vol. 35 of IMA Vol. Math. Appl., Springer, New York, 1991, pp. 37-61.; H. Berestycki, B. Larrouturou, J.-M. Roquejoffre, Mathematical investigation of the cold boundary difficulty in flame propagation theory, in: P.C. Fife, A. LiñÁn, F. Williams (Eds.), Dynamical Issues in Combustion Theory (Minneapolis, MN, 1989), vol. 35 of IMA Vol. Math. Appl., Springer, New York, 1991, pp. 37-61. · Zbl 0751.76066
[14] Burgers, G.; van Leeuwen, P. J.; Evensen, G., Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719-1724 (1998)
[15] Campos, D.; Llebot, J. E.; Fort, J., Reaction-diffusion pulses: a combustion model, J. Phys. A: Math. Gen., 37, 6609-6621 (2004) · Zbl 1060.80001
[16] Carey, G. F.; Shen, Y., Least-squares finite element approximation of Fisher’s reaction-diffusion equation, Numer. Meth. Part. Diff. Eq., 11, 2, 175-186 (1995) · Zbl 0819.65124
[17] Chen, X., Generation and propagation of interfaces in reaction-diffusion systems, Trans. Amer. Math. Soc., 334, 2, 877-913 (1992) · Zbl 0785.35006
[18] Chen, Y.; Snyder, C., Assimilating vortex position with an ensemble Kalman filter, Mon. Weather Rev., 135, 1828-1845 (2007)
[19] Clark, T. L.; Coen, J.; Latham, D., Description of a coupled atmosphere-fire model, Int. J. Wildland Fire, 13, 49-64 (2004)
[20] Clark, T. L.; Jenkins, M. A.; Coen, J.; Packham, D., A coupled atmospheric-fire model: convective feedback on fire line dynamics, J. Appl. Meteor, 35, 875-901 (1996)
[21] Class, A. G.; Matkowsky, B. J.; Klimenko, A. Y., A unified model of flames as gasdynamic discontinuities, J. Fluid Mech., 491, 11-49 (2003) · Zbl 1063.76658
[22] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Eng., 156, 1-4, 185-210 (1998) · Zbl 0959.76040
[23] F. Darema, Dynamic data driven applications systems: a new paradigm for application simulations and measurements, in: M. Bubak, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2004: Proceedings of the 4th International Conference, vol. 3038 of Lecture Notes in Computer Science, Springer, 2004, pp. 662-669.; F. Darema, Dynamic data driven applications systems: a new paradigm for application simulations and measurements, in: M. Bubak, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2004: Proceedings of the 4th International Conference, vol. 3038 of Lecture Notes in Computer Science, Springer, 2004, pp. 662-669.
[24] Dold, J. W.; Thatcher, R. W.; Shah, A. A., High order effects in one step reaction sheet jump conditions for premixed flames, Combust. Theory Model., 7, 1, 109-127 (2003) · Zbl 1068.80541
[25] C.C. Douglas, J.D. Beezley, J. Coen, D. Li, W. Li, A. K. Mandel, J. Mandel, G. Qin, A. Vodacek, Demonstrating the validity of a wildfire DDDAS, in: V.N. Alexandrov, D.G. van Albada, P.M.A. Sloot, J. Dongarra (Eds.), Computational Science-ICCS 2006: Proceedings of the 6th International Conference, Reading, UK, May 28-31, 2006, Part III, vol. 3993 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 522-529.; C.C. Douglas, J.D. Beezley, J. Coen, D. Li, W. Li, A. K. Mandel, J. Mandel, G. Qin, A. Vodacek, Demonstrating the validity of a wildfire DDDAS, in: V.N. Alexandrov, D.G. van Albada, P.M.A. Sloot, J. Dongarra (Eds.), Computational Science-ICCS 2006: Proceedings of the 6th International Conference, Reading, UK, May 28-31, 2006, Part III, vol. 3993 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 522-529.
[26] Dupuy, J.-L., Testing two radiative physical models for fire spread through porous forest fuel beds, Combust. Theory Model., 155, 1, 149-180 (2000)
[27] Dupuy, J.-L.; Larini, M., Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects, Int. J. Wildland Fire, 9, 3, 155-172 (1999)
[28] Dupuy, J.-L.; Morvan, D., Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model, Int. J. Wildland Fire, 14, 141-151 (2005)
[29] Emara-Shabaik, H. E.; Khulief, Y. A.; Hussaini, I., A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation, Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 216, 497-512 (2002)
[30] Ern, A.; Douglas, C. C.; Smooke, M. D., Detailed chemistry modeling of laminar diffusion flames on parallel computers, Int. J. Supercomput. Ap., 9, 167-186 (1995)
[31] G. Evensen, Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. 99 (C5(10)) (1994) 143-162.; G. Evensen, Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. 99 (C5(10)) (1994) 143-162.
[32] Evensen, G., The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343-367 (2003)
[33] Evensen, G., Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54, 539-560 (2004)
[34] Ferragut, L.; Asensio, I., Mixed finite element methods for a class of nonlinear reaction diffusion problems, Neural Parallel Sci. Comput., 10, 1, 91-112 (2002) · Zbl 1007.65077
[35] P.C. Fife, Dynamics of internal layers and diffusive interfaces, vol. 53 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.; P.C. Fife, Dynamics of internal layers and diffusive interfaces, vol. 53 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. · Zbl 0684.35001
[36] Franca, L. P.; Madureira, A. L.; Valentin, F., Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions, Comput. Methods Appl. Mech. Eng., 194, 27-29, 3006-3021 (2005) · Zbl 1091.76034
[37] Franca, L. P.; Ramalho, J. V.A.; Valentin, F., Enriched finite element methods for unsteady reaction-diffusion problems, Commun. Numer. Meth. Engrg., 22, 519-526 (2006) · Zbl 1105.65347
[38] Frandsen, W. H., Fire spread through porous fuels from conservation of energy, Combustion and Flame, 16, 9-16 (1971)
[39] Frank-Kamenetskii, D. A., Diffusion and Heat Exchange in Chemical Kinetics (1955), Princeton University Press
[40] Gazdag, J.; Canosa, J., Numerical solution of Fisher’s equation, J. Appl. Probability, 11, 445-457 (1974) · Zbl 0288.65055
[41] B.H. Gilding, R. Kersner, Travelling waves in nonlinear diffusion-convection reaction, in: Progress in Nonlinear Differential Equations and their Applications, vol. 60, Birkhäuser Verlag, Basel, 2004.; B.H. Gilding, R. Kersner, Travelling waves in nonlinear diffusion-convection reaction, in: Progress in Nonlinear Differential Equations and their Applications, vol. 60, Birkhäuser Verlag, Basel, 2004. · Zbl 1073.35002
[42] F. Giroud, J. Margerit, C. Picard, O. Séro-Guillaume, Data assimilation: the need for a protocole, in: D.X. Viegas (Ed.), Forest Fire Research: Proceedings 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Louso, Coimbra, Portugal, 16-18 November, 1998, vol. 1, AssociaçÃo para o Desenvolvimento da Aerodinamica Industrial, 1998, pp. 583-598.; F. Giroud, J. Margerit, C. Picard, O. Séro-Guillaume, Data assimilation: the need for a protocole, in: D.X. Viegas (Ed.), Forest Fire Research: Proceedings 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Louso, Coimbra, Portugal, 16-18 November, 1998, vol. 1, AssociaçÃo para o Desenvolvimento da Aerodinamica Industrial, 1998, pp. 583-598.
[43] Grishin, A. M., General mathematical model for forest fires and its applications, Combustion Explosion and Shock Waves, 32, 503-519 (1996)
[44] Grishin, A. M.; Shipulina, O. V., Mathematical model for spread of crown fires in homogeneous forests and along openings, Combust. Explo. Shock. Waves, 38, 622-632 (2002)
[45] Gubernov, V.; Mercer, G. N.; Sidhu, H. S.; Weber, R. O., Evans function stability of combustion waves, SIAM J. Appl. Math., 63, 4, 1259-1275 (2003) · Zbl 1024.35044
[46] Gubernov, V. V.; Mercer, G. N.; Sidhu, H. S.; Weber, R. O., Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 460, 2048, 2415-2435 (2004) · Zbl 1063.80008
[47] Hager, W. W., Updating the inverse of a matrix, SIAM Rev., 31, 2, 221-239 (1989) · Zbl 0671.65018
[48] Houtekamer, P.; Mitchell, H. L., Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126, 3, 796-811 (1998)
[49] Infeld, E.; Rowlands, G., Nonlinear Waves, Solitons and Chaos (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0726.76018
[50] Johns, C. J.; Mandel, J., A two-stage ensemble Kalman filter for smooth data assimilation, Environ. Ecol. Stat., 15, 101-110 (2008)
[51] Kalman, R. E., A new approach to linear filtering and prediction problems, Transactions of the ASME-Journal of Basic Engineering, Series D, 82, 35-45 (1960)
[52] Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability (2003), Cambridge University Press
[53] A. Kolmogorov, I. Petrovskii, N. Piscounov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in: V.M. Tikhomirov (Ed.), Selected Works of A.N. Kolmogorov I, Kluwer, 1991, pp. 248-270, translated by V.M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1-25, 1937.; A. Kolmogorov, I. Petrovskii, N. Piscounov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in: V.M. Tikhomirov (Ed.), Selected Works of A.N. Kolmogorov I, Kluwer, 1991, pp. 248-270, translated by V.M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1-25, 1937.
[54] R. Kremens, J. Faulring, C.C. Hardy, Measurement of the time-temperature and emissivity history of the burn scar for remote sensing applications, Paper J1G.5, in: Proceedings of the 2nd Fire Ecology Congress, Orlando FL, American Meteorological Society, 2003.; R. Kremens, J. Faulring, C.C. Hardy, Measurement of the time-temperature and emissivity history of the burn scar for remote sensing applications, Paper J1G.5, in: Proceedings of the 2nd Fire Ecology Congress, Orlando FL, American Meteorological Society, 2003.
[55] Larini, M.; Giroud, F.; Porterie, B.; Loraud, J. C., A multiphase formulation for fire propagation in heterogeneous combustible media, Int. J. Heat Mass Tran., 41, 881-897 (1998) · Zbl 0917.76098
[56] Law, C. K.; Chao, B. H.; Umemura, A., On closure in activation energy asymptotics of premixed flames, Combust. Sci. Technol., 88, 59-88 (1993)
[57] Liao, W.; Zhu, J.; Khaliq, A. Q.M., A fourth-order compact algorithm for nonlinear reaction-diffusion equations with Neumann boundary conditions, Numer. Meth. Part. Diff. Eq., 22, 3, 600-616 (2006) · Zbl 1092.65073
[58] Linn, R.; Reisner, J.; Colman, J. J.; Winterkamp, J., Studying wildfire behavior using FIRETEC, Int. J. of Wildland Fire, 11, 233-246 (2002)
[59] R.R. Linn, Transport model for prediction of wildfire behavior, Ph.D. Thesis, Department of Mechanical Engineering, New Mexico State University, 1997.; R.R. Linn, Transport model for prediction of wildfire behavior, Ph.D. Thesis, Department of Mechanical Engineering, New Mexico State University, 1997.
[60] J. Mandel, Efficient implementation of the ensemble Kalman filter, CCM Report 231, University of Colorado Denver, 2006, http://www.math.cudenver.edu/ccm/reports/rep231.pdf; J. Mandel, Efficient implementation of the ensemble Kalman filter, CCM Report 231, University of Colorado Denver, 2006, http://www.math.cudenver.edu/ccm/reports/rep231.pdf
[61] J. Mandel, J.D. Beezley, Predictor-corrector ensemble filters for the assimilation of sparse data into high dimensional nonlinear systems, CCM Report 232, University of Colorado Denver, 2006, http://www.math.cudenver.edu/ccm/reports/rep232.pdf; J. Mandel, J.D. Beezley, Predictor-corrector ensemble filters for the assimilation of sparse data into high dimensional nonlinear systems, CCM Report 232, University of Colorado Denver, 2006, http://www.math.cudenver.edu/ccm/reports/rep232.pdf
[62] J. Mandel, J.D. Beezley, L.S. Bennethum, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Hatcher, M. Kim, A. Vodacek, A dynamic data driven wildland fire model, in: Y. Shi, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2007: Proceedings of the 7th International Conference, vol. 4487 of Lecture Notes in Computer Science, Springer, 2007, pp. 1042-1049.; J. Mandel, J.D. Beezley, L.S. Bennethum, S. Chakraborty, J.L. Coen, C.C. Douglas, J. Hatcher, M. Kim, A. Vodacek, A dynamic data driven wildland fire model, in: Y. Shi, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2007: Proceedings of the 7th International Conference, vol. 4487 of Lecture Notes in Computer Science, Springer, 2007, pp. 1042-1049.
[63] J. Mandel, L.S. Bennethum, M. Chen, J.L. Coen, C.C. Douglas, L.P. Franca, C.J. Johns, M. Kim, A.V. Knyazev, R. Kremens, V. Kulkarni, G. Qin, A. Vodacek, J. Wu, W. Zhao, A. Zornes, Towards a dynamic data driven application system for wildfire simulation, in: V.S. Sunderam, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2005. vol. 3515 of Lect. Notes Comput. Sci., Springer, 2005, pp. 632-639.; J. Mandel, L.S. Bennethum, M. Chen, J.L. Coen, C.C. Douglas, L.P. Franca, C.J. Johns, M. Kim, A.V. Knyazev, R. Kremens, V. Kulkarni, G. Qin, A. Vodacek, J. Wu, W. Zhao, A. Zornes, Towards a dynamic data driven application system for wildfire simulation, in: V.S. Sunderam, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2005. vol. 3515 of Lect. Notes Comput. Sci., Springer, 2005, pp. 632-639.
[64] J. Mandel, M. Chen, L.P. Franca, C. Johns, A. Puhalskii, J.L. Coen, C.C. Douglas, R. Kremens, A. Vodacek, W. Zhao, A note on dynamic data driven wildfire modeling, in: M. Bubak, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2004, vol. 3038 of Lect. Notes Comput. Sci., Springer, 2004, pp. 725-731.; J. Mandel, M. Chen, L.P. Franca, C. Johns, A. Puhalskii, J.L. Coen, C.C. Douglas, R. Kremens, A. Vodacek, W. Zhao, A note on dynamic data driven wildfire modeling, in: M. Bubak, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (Eds.), Computational Science-ICCS 2004, vol. 3038 of Lect. Notes Comput. Sci., Springer, 2004, pp. 725-731.
[65] Mercer, G. N.; Weber, R. O., Combustion wave speed, Proc. Roy. Soc. Lond. Ser. A, 450, 193-198 (1995) · Zbl 0836.76097
[66] Mercer, G. N.; Weber, R. O., Combustion waves in two dimensions and their one-dimensional approximation, Combust. Theor. Model., 1, 157-165 (1997) · Zbl 0933.76508
[67] Mercer, G. N.; Weber, R. O.; Gray, B. F.; Watt, A., Combustion pseudo-waves in a system with reactant consumption and heat loss, Math. Comput. Model., 24, 8, 29-38 (1996) · Zbl 0887.35154
[68] Mickens, R. E., A nonstandard finite difference scheme for a PDE modeling combustion with nonlinear advection and diffusion, Math. Comput. Simulat., 69, 5-6, 439-446 (2005) · Zbl 1119.65374
[69] Morandini, F.; Santoni, P. A.; Balbi, J. H., The contribution of radiant heat transfer to laboratory-scale fire spread under the influences of wind and slope, Fire Safety J., 36, 519-543 (2001)
[70] D. Morvan, M. Larini, J.L. D.P. Fernandes, A.I. Miranda, J. Andre, O. Sero-Guillaume, D. Calogine, P. Cuinas, Behaviour modelling of wildland fires: a state of the art, Euro-Mediterranean Wildland Fire Laboratory, a ‘wall-less’ Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region, 2002.; D. Morvan, M. Larini, J.L. D.P. Fernandes, A.I. Miranda, J. Andre, O. Sero-Guillaume, D. Calogine, P. Cuinas, Behaviour modelling of wildland fires: a state of the art, Euro-Mediterranean Wildland Fire Laboratory, a ‘wall-less’ Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region, 2002.
[71] Norbury, J.; Stuart, A. M., Travelling combustion waves in a porous medium. Part I. Existence, SIAM J. Appl. Math., 48, 1, 155-169 (1988) · Zbl 0642.34013
[72] Norbury, J.; Stuart, A. M., Travelling combustion waves in a porous medium. Part II. Stability, SIAM J. Appl. Math., 48, 2, 374-392 (1988) · Zbl 0693.35006
[73] A. Ononye, A. Vodacek, R. Kremens, Improved fire temperature estimation using constrained spectral unmixing, in: Remote Sensing for Field Users, Proceedings of the 10th Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, UT, Am. Soc. Photogram. Remote Sens., CD-ROM, 2005.; A. Ononye, A. Vodacek, R. Kremens, Improved fire temperature estimation using constrained spectral unmixing, in: Remote Sensing for Field Users, Proceedings of the 10th Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, UT, Am. Soc. Photogram. Remote Sens., CD-ROM, 2005.
[74] Ononye, A. E.; Vodacek, A.; Saber, E., Automated extraction of fire line parameters from multispectral infrared images, Remote Sens. Environ., 108, 179-188 (2007)
[75] Pastor, E.; Zarate, L.; Planas, E.; Arnaldos, J., Mathematical models and calculations systems for the study of wildland fire behavior, Prog. Energy Combust. Sci., 29, 139-153 (2003)
[76] Quintiere, J. G., Principles of Fire Behavior (1998), Delmar Publishers: Delmar Publishers Albany, NY
[77] Rastigejev, Y.; Matalon, M., Numerical simulation of flames as gas-dynamic discontinuities, Combust. Theor. Model., 10, 459-481 (2006) · Zbl 1115.80315
[78] Richards, G. D., A general mathematical framework for modelling two-dimensional wildland fire spread, Int. J. Wildland Fire, 5, 63-72 (1995)
[79] Richards, G. D., The mathematical modelling and computer simulation of wildland fire perimeter growth over a 3-dimensional surface, Int. J. Wildland Fire, 9, 3, 213-221 (1999)
[80] Robinson, J. C., Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1026.37500
[81] Roessler, J.; Hüssner, H., Numerical solution of the \((1 + 2)\)-dimensional Fisher’s equation by finite elements and the Galerkin method, Math. Comput. Modelling, 25, 3, 57-67 (1997) · Zbl 0885.65105
[82] R.C. Rothermel, A mathematical model for predicting fire spread in wildland fires, USDA Forest Service Research Paper INT-115, 1972.; R.C. Rothermel, A mathematical model for predicting fire spread in wildland fires, USDA Forest Service Research Paper INT-115, 1972.
[83] Ruan, F.; McLaughlin, D., An efficient multivariate random field generator using the fast Fourier transform, Adv. Water Resour., 21, 385-399 (1998)
[84] Šembera, J.; Beneš, M., Nonlinear Galerkin method for reaction-diffusion systems admitting invariant regions, J. Comput. Appl. Math., 136, 1-2, 163-176 (2001) · Zbl 0990.65112
[85] Serón, F. J.; Gutiérrez, D.; Magallón, J.; Ferragut, L.; Asensio, M. I., The evolution of a wildland forest fire front, Visual Comput., 21, 152-169 (2005)
[86] J.A. Sethian, Level Set Methods and Fast Marching Methods, vol. 3 of Cambridge Monographs on Applied and Computational Mathematics, 2nd ed., Cambridge University Press, Cambridge, 1999.; J.A. Sethian, Level Set Methods and Fast Marching Methods, vol. 3 of Cambridge Monographs on Applied and Computational Mathematics, 2nd ed., Cambridge University Press, Cambridge, 1999.
[87] Sherratt, J. A., On the transition from initial data to travelling waves in the Fisher-KPP equation, Dynam. Stabil. Syst., 13, 2, 167-174 (1998) · Zbl 0912.35084
[88] Simeoni, A.; Santoni, P. A.; Larini, M.; Balbi, J. H., On the wind advection influence on the fire spread across a fuel bed: modelling by a semi-physical approach and testing with experiments, Fire Safety J., 36, 491-513 (2001)
[89] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[90] Theodoropoulos, C.; Qian, Y.; Kevrekidis, I., Coarse stability and bifurcation analysis using time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci. USA, 97, 9840-9843 (2000) · Zbl 1064.65121
[91] Tippett, M. K.; Anderson, J. L.; Bishop, C. H.; Hamill, T. M.; Whitaker, J. S., Ensemble square root filters, Mon. Weather Rev., 131, 1485-1490 (2003)
[92] van Leeuwen, P., A variance-minimizing filter for large-scale applications, Mon. Weather Rev., 131, 9, 2071-2084 (2003)
[93] Viegas, D. X., A mathematical model for forest fires blow-up, Combust. Sci. Technol., 177, 1-25 (2005)
[94] Weber, R. O., Modelling fire spread through fuel beds, Prog. Energy Combust., 17, 67-82 (1991)
[95] Weber, R. O., Toward a comprehensive wildfire spread model, Int. J. Wildland Fire, 1, 4, 245-248 (1991)
[96] R.O. Weber, G.N. Mercer, H.S. Sidhu, B.F. Gray, Combustion waves for gases \((L e = 1L e \to \infty;\); R.O. Weber, G.N. Mercer, H.S. Sidhu, B.F. Gray, Combustion waves for gases \((L e = 1L e \to \infty;\) · Zbl 0885.76105
[97] Wotton, B. M.; McAlpine, R. S.; Hobbs, M. W., The effect of fire front width on surface fire behaviour, Int. J. Wildland Fire, 9, 247-253 (1999)
[98] Zeldovich, Y. B.; Barrenblatt, G. I.; Librovich, V. B.; Makhviladze, G. M., The Mathematical Theory of Combustion and Explosions (1985), Consultants Bureau: Consultants Bureau New York
[99] Zhao, S.; Wei, G. W., Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher’s equation, SIAM J. Sci. Comput., 25, 1, 127-147 (2003) · Zbl 1043.35015
[100] Zhou, X.; Mahalingam, S., Evaluation of a reduced mechanism for modeling combustion of pyrolysis gas in wildland fire, Combust. Sci. Technol., 171, 39-70 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.