×

A framework of fuzzy hybrid systems for modelling and control. (English) Zbl 1193.93123

Summary: This paper presents a new approach to modelling and control of hybrid systems with both continuous variables and discrete events. Applying the fuzzy set theory, a hierarchical fuzzy hybrid structure consisting of a fuzzy discrete event dynamic system and a continuous variable dynamic system is constructed, which not only captures the hybrid continuous/discrete dynamics but also handles the uncertainties in states and state transitions. The identification of continuous and discrete components is developed, and the hybrid control is then synthesised by fuzzy IF-THEN rules embedded in the fuzzy interface. An example of the optimisation of a production line in manufacturing shows the efficacy of the proposed approach.

MSC:

93C42 Fuzzy control/observation systems
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
90B30 Production models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alur R., Hybrid systems pp 209– (1993) · doi:10.1007/3-540-57318-6_30
[2] Amin S., Hybrid systems: computation and control. Proceedings of the 9th International Workshop, 29–31 March 2006, Santa Barbara, CA. pp 49– (2006)
[3] DOI: 10.1016/j.nahs.2008.09.003 · Zbl 1163.49038 · doi:10.1016/j.nahs.2008.09.003
[4] DOI: 10.1109/ROBOT.2004.1307397 · doi:10.1109/ROBOT.2004.1307397
[5] DOI: 10.1016/S0005-1098(98)00175-7 · Zbl 0943.93044 · doi:10.1016/S0005-1098(98)00175-7
[6] Branicky M.S., Proceedings of the 32nd IEEE conference on decision and control 3 pp 2309– (1993) · doi:10.1109/CDC.1993.325609
[7] DOI: 10.1109/9.664150 · Zbl 0904.93036 · doi:10.1109/9.664150
[8] DOI: 10.1109/9.654885 · Zbl 0951.93002 · doi:10.1109/9.654885
[9] DOI: 10.1109/TFUZZ.2005.864085 · Zbl 05452478 · doi:10.1109/TFUZZ.2005.864085
[10] DOI: 10.1080/00207540500465394 · doi:10.1080/00207540500465394
[11] Cheng S., Computer integrated manufacturing systems 12 pp 1577– (2006)
[12] DOI: 10.1023/A:1008330914786 · Zbl 0969.93024 · doi:10.1023/A:1008330914786
[13] DOI: 10.1109/91.784199 · doi:10.1109/91.784199
[14] Koutsoukos X.D., Proceedings of the IEEE 88 pp 1026– (2000)
[15] DOI: 10.1016/S1367-5788(97)00019-9 · doi:10.1016/S1367-5788(97)00019-9
[16] Lazar M., IEEE transactions on automatic control 51 pp 1813– (2006)
[17] Lin F., Proceedings of the 31st IEEE conference on decision and control 3 pp 2539– (1992)
[18] DOI: 10.1109/91.618270 · doi:10.1109/91.618270
[19] DOI: 10.1016/S0890-5401(03)00067-1 · Zbl 1069.68067 · doi:10.1016/S0890-5401(03)00067-1
[20] DOI: 10.1016/j.isatra.2008.10.007 · doi:10.1016/j.isatra.2008.10.007
[21] Palm R., Proceedings of held jointly with IEEE international symposium on computational intelligence in robotics and automation (CIRA), intelligent systems and semiotics (ISAS), intelligent control (ISIC) pp 130– (1998)
[22] DOI: 10.1080/03081070500068043 · Zbl 1087.93519 · doi:10.1080/03081070500068043
[23] Stiver J.A., Proceedings of the 31st IEEE conference on decision and control 4 pp 3748– (1992)
[24] DOI: 10.1109/TSMCB.2006.887434 · doi:10.1109/TSMCB.2006.887434
[25] Xu X., Hybrid systems: computation and control. Proceedings of the 6th International Workshop. April 2003, Prague, Czech Republic pp 540– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.