zbMATH — the first resource for mathematics

Finite element approximation of nonlinear transient magnetic problems involving periodic potential drop excitations. (English) Zbl 1319.78018
Summary: This paper deals with the computation of nonlinear 2D transient magnetic fields when the data concerning the electric current sources involve potential drop excitations. In the first part, a mathematical model is stated, which is solved by an implicit time discretization scheme combined with a finite element method for space approximation. The second part focuses on developing a numerical method to compute periodic solutions by determining a suitable initial current which avoids large simulations to reach the steady state. This numerical method leads to solve a nonlinear system of equations which requires to approximate several nonlinear and linear magnetostatic problems. The proposed methods are first validated with an axisymmetric example and sinusoidal source having an analytical solution. Then, we show the saving in computational effort that this methodology offers to approximate practical problems specially with pulse-width modulation (PWM) voltage supply.

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Hara, T.; Naito, T.; Umoto, J., Time-periodic finite element method for nonlinear diffusion equations, IEEE Trans. Magn., 6, 2261-2264, (1985)
[2] A. Bermúdez, D. Gómez, R. Rodríguez, P. Salgado, P. Venegas, Numerical solution of a transient nonlinear axisymmetric eddy current model with nonlocal boundary condition, Math. Model Methods Appl. Sci. (in press). · Zbl 1274.78088
[3] Bottauscio, O.; Chiampi, M.; Chiarabaglio, D., Advanced model of laminated magnetic cores for two-dimensional field analysis, IEEE Trans. Magn., 36, 3, 561-573, (2000)
[4] De Gersem, H.; Vanaverbeke, S.; Samaey, G., Three-dimensional two-dimensional coupled model for eddy currents in laminated iron cores, IEEE Trans. Magn., 48, 815-818, (2012)
[5] Glowinski, R.; Marrocco, A., Analyse numérique du champ magnétique d’un alternateur par éléments finis et sur-relaxation ponctuelle non linéaire, Comput. Methods Appl. Math., 3, 1, 55-85, (1974) · Zbl 0288.65068
[6] Van Keer, R.; Dupré, L.; Melkebeek, J. A.A., Computational methods for the evaluation of the electromagnetic losses in electrical machinery, Arch. Comput. Methods Eng., 5, 385-443, (1999)
[7] Bertotti, G., Hysteresis in magnetism, (1998), Academic Press
[8] Bertotti, G.; Boglietti, A.; Chiampi, M.; Chiarabaglio, D.; Fiorillo, F.; Lazzari, M., An improved estimation of iron losses in rotating electrical machines, IEEE Trans. Magn., 27, 6, 5007-5009, (1991)
[9] Nakata, T.; Takahashi, N.; Fujiwara, K.; Muramatsu, K.; Ohashi, H.; Zhu, H. L., Practical analysis of 3D dynamic nonlinear magnetic field using time-periodic finite element method, IEEE Trans. Magn., 31, 3, 1416-1419, (1995)
[10] Salon, S. J.; Burow, D. W.; Ashley, R. E.; Ovacik, L.; DeBortoli, M. J, Finite element analysis of induction machines in the frequency domain, IEEE Trans. Magn., 29, 2, 1438-1441, (1993)
[11] Stermecki, A.; Bíró, O.; Preis, K.; Rainer, S.; Ofner, G., Numerical analysis of steady-state operation of three-phase induction machines by an approximate frequency domain technique, Elektrotechnik & Informationstechnik, 128, 3, 81-85, (2011)
[12] Li, S.; Hofmann, H., Numerically efficient steady-state finite-element analysis of magnetically saturated electromechanical devices, IEEE Trans. Magn., 39, 6, 3481-3485, (2003)
[13] Zhong, D.; Hofmann, H., Steady-state finite-element solver for rotor eddy currents in permanent-magnet machines using a shooting-Newton/GMRES approach, IEEE Trans. Magn., 40, 5, 3249-3253, (2004)
[14] Bíró, O.; Preis, K., An efficient time domain method for nonlinear periodic eddy current problems, IEEE Trans. Magn., 42, 4, 695-698, (2006)
[15] A. Bossavit, Eddy currents in dimension 2: voltage drops, in: W. Mathis, T. Schindler (Eds.), X. Int. Symp. on Theoret. Electrical Engineering, Proc. ISTET’99, University Otto-von-Guericke, Magdeburg, Germany, 1999, pp. 103-107.
[16] Bermúdez, A.; Moreno, C., Duality methods for solving variational inequalities, Comput. Math. Appl., 7, 43-58, (1981) · Zbl 0456.65036
[17] Brézis, H., Opérateurs maximaux monotones et semigroupes de contractions dans LES spaces de Hilbert, (1973), North Holland · Zbl 0252.47055
[18] Hantila, F. I.; Preda, G.; Vasiliu, M., Polarization methods for static fields, IEEE Trans. Magn., 36, 4, 672-675, (2000)
[19] Parés, C.; Macías, J.; Castro, M., Duality methods with an automatic choice of parameters. application to shallow water equations in conservative form, Numer. Math., 89, 161-189, (2001) · Zbl 0991.65057
[20] Koczka, G.; Außerhofer, S.; Bíró, O.; Preis, K., Optimal convergence of the fixed-point method for nonlinear eddy current problems, IEEE Trans. Magn., 45, 948-951, (2009)
[21] Hart, D. W., Power electronics, (2011), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.