×

The effect of microstructural representation on simulations of microplastic ratcheting. (English) Zbl 1434.74037

Summary: This paper assesses the sensitivity of cyclic plasticity to microstructure morphology by examining and comparing the microplastic ratcheting behavior of different idealized microstructures (square, hexagonal, tessellated, and digitized from experimental data). This analysis demonstrates the sensitivity of computational accuracy to the various approximations in microstructural representation. The methodology used to perform this study relies on a coupling between microstructural characterization, mechanical testing and numerical simulations to investigate the influence of the microstructure on the purely tensile uniaxial microplastic ratcheting behavior of pure nickel polycrystals. The morphology and deformation behavior of polycrystals were characterized using electron back-scatter diffraction, while a finite element model of crystal plasticity was used in a computational framework. The predicted cyclic behavior is compared to experimental results both at the macroscopic and microstructural scales. The stress – strain response is less sensitive to the details of the microstructural representation than might be expected with all representations displaying similar macroscopic constitutive response. However, the details of the plastic strain distribution at the microstructural scale and the related estimations of damage mechanics vary substantially from one microstructural representation to another.

MSC:

74C20 Large-strain, rate-dependent theories of plasticity
74S05 Finite element methods applied to problems in solid mechanics
74M25 Micromechanics of solids
74R20 Anelastic fracture and damage
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdel-Karim, M.: Modified kinematic hardening rules for simulations of ratcheting, International journal of plasticity 25, 1560-1587 (2009) · Zbl 1272.74086
[2] Abdel-Karim, M.; Ohno, N.: Kinematic hardening model suitable for ratcheting with steady-state, International journal of plasticity 16, 225-240 (2000) · Zbl 0977.74503 · doi:10.1016/S0749-6419(99)00052-2
[3] Ahmed, J.; Wilkinson, A. J.: ECCI characterisation of dislocation structures associated with extrusion/intrusion systems and fatigue cracks in copper single crystals, Philosophical magazine 81, 1473-1488 (2001)
[4] Armstrong, P.J., Frederick, C.O., 1966. A mathematical representation of multiaxial Bauschinger effect. In: G.E.G.B. Report RD/B/N, p. 731.
[5] Asaro, R. J.: Crystal plasticity, Journal of applied mechanics 50, 921-934 (1983) · Zbl 0557.73033 · doi:10.1115/1.3167205
[6] Bari, S.; Hassan, T.: Anatomy of coupled constitutive models for ratcheting simulation, International journal of plasticity 16, 381-409 (2000) · Zbl 1004.74020 · doi:10.1016/S0749-6419(99)00059-5
[7] Bari, S.; Hassan, T.: Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation, International journal of plasticity 17, 885-905 (2001) · Zbl 1059.74013 · doi:10.1016/S0749-6419(00)00031-0
[8] Besson, J.; Cailletaud, G.; Chaboche, J. L.; Forest, S.: Mécanique non-linéaire des matériaux, (2001) · Zbl 0997.74002
[9] Biffle, J.H., 1987. A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method. In: SAND Report, Albuquerque, NM, p. SAND87-1305.
[10] Boyce, B. L.; Chen, X.; Peters, J. O.; Hutchinson, J. W.; Ritchie, R. O.: Mechanical relaxation of localized residual stresses associated with foreign object damage, Materials science and engineering A 349, 48-58 (2003)
[11] Brewer, L. N.; Othon, M. A.; Young, L. M.; Angeliu, T. M.: Misorientation mapping for visualization of plastic deformation via electron back-scattered diffraction, Microscopy and microanalysis 12, 85-91 (2006)
[12] Buchheit, T. E.; Wellman, G. W.; Battaile, C. C.: Investigating the limits of polycrystal plasticity modelling, International journal of plasticity 21, 221-249 (2005) · Zbl 1114.74390 · doi:10.1016/j.ijplas.2003.10.009
[13] Cailletaud, G.; Sai, K.: Study of plastic/viscoplastic models with various inelastic mechanisms, International journal of plasticity 11, 991-1005 (1995) · Zbl 0859.73029 · doi:10.1016/S0749-6419(95)00040-2
[14] Cailletaud, G.; Sai, K.: A polycrystalline model for the description of ratchetting: effect of intergranular hardening and intragranular hardening, Materials science and engineering A 480, No. 1 – 2, 24-39 (2008)
[15] Chaboche, J. L.: On some modifications of kinematic hardening to improve the description of ratcheting effects, International journal of plasticity 7, No. 661 – 678 (1991)
[16] Chaboche, J. L.: A review of some plasticity and viscoplasticity constitutive theories, International journal of plasticity 24, 1642-1693 (2008) · Zbl 1142.74012 · doi:10.1016/j.ijplas.2008.03.009
[17] Chaboche, J. L.; Nouailhas, D.: Constitutive modeling of ratchetting effects: part I. Experimental facts and properties of classical models, Transactions of the ASME: journal of engineering materials and technology 111, 384-392 (1989)
[18] Chen, X.; Jiao, R.: Modified kinematic hardening rule for multiaxial ratcheting prediction, International journal of plasticity 20, 871-898 (2004)
[19] Chen, X.; Jiao, R.; Kim, K. S.: On the ohno – Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel, International journal of plasticity 21, 161-184 (2005) · Zbl 1112.74334 · doi:10.1016/j.ijplas.2004.05.005
[20] Chen, G.; Chen, X.; Niu, C. D.: Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates, Materials science and engineering A 421, 238-244 (2006)
[21] Chen, X.; Li, R.; Qi, K.; Lu, G. Q.: Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste, Journal of electronic materials 37, No. 10, 1574-1579 (2008)
[22] Dafalias, Y. E.; Popov, V. P.: A model of nonlinear hardening materials for complex loading, Acta mechanica 21, No. 173 – 192 (1975) · Zbl 0312.73047 · doi:10.1007/BF01181053
[23] Dingreville, R., Battaile, C.C., Brewer, L.N., in preparation.
[24] Feaugas, X.; Gaudin, C.: Ratchetting process in the stainless steel AISI 316L at 300K: an experimental investigation, International journal of plasticity 20, No. 4 – 5, 643-662 (2004) · Zbl 1138.74317 · doi:10.1016/S0749-6419(03)00076-7
[25] Fisher, R. A.; Yates, F.: Statistical tables for biological, agricultural and medical research, (1948) · Zbl 0030.31503
[26] Flanagan, D. P.; Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International journal for numerical methods in engineering 17, 597-609 (1981) · Zbl 0478.73049 · doi:10.1002/nme.1620170504
[27] Hassan, T.; Taleb, L.; Krishna, S.: Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models, International journal of plasticity 24, No. 10, 1863-1889 (2008) · Zbl 1419.74011
[28] Hill, R.; Rice, J. R.: Constitutive analysis of elastic – plastic crystals at arbitrary strain, Journal of the mechanics and physics of solids 20, 401-413 (1972) · Zbl 0254.73031 · doi:10.1016/0022-5096(72)90017-8
[29] Holm, E. A.; Battaile, C. C.: The computer simulation of microstructural evolution, Journal of metals 53, 20-23 (2001)
[30] Hutchinson, J. W.: Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the royal society of London A 348, 101-127 (1976) · Zbl 0319.73059 · doi:10.1098/rspa.1976.0027
[31] Johansson, G.; Ekh, M.; Runesson, K.: Computational modeling of inelastic large ratcheting strains, International journal of plasticity 21, No. 5, 955-980 (2005) · Zbl 1161.74335 · doi:10.1016/j.ijplas.2004.05.013
[32] Kang, G.: Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application, International journal of fatigue 30, 1448-1472 (2008)
[33] Kang, G.; Kan, Q.: Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel, Mechanics of materials 39, No. 5, 488-499 (2007)
[34] Kocks, U. F.: Laws for work hardening and low temperature creep, Transactions of the ASME: journal of engineering materials and technology 98, 76-85 (1976)
[35] Kröner, E.: Allgemeine kontinuumstheorie der versetzugnen und eigenspannungen, Archive for rational mechanics and analysis 4, 273-334 (1960) · Zbl 0090.17601 · doi:10.1007/BF00281393
[36] Kulkarni, S. C.; Desai, Y. M.; Kant, T.; Reddy, G. R.; Prasad, P.; Vaze, K. K.; Gupta, C.: Uniaxial and biaxial ratcheting in piping materials – experiments and analysis, International journal of pressure vessels and piping 81, 609-617 (2004)
[37] Kwofie, S.: Cyclic creep behaviour described in terms of one parameter kinetic model, Materials science and engineering A 392, 23-30 (2005)
[38] Lee, E. H.: Elastic – plastic deformation at finite strains, Journal of applied mechanics 36, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[39] Lemaitre, J., Chaboche, J.L., 1985. Mecanique des materiaux solides, Paris.
[40] Mcdowell, D. L.: Stress state dependence of cyclic ratchetting behavior of two rail steels, International journal of plasticity 11, 397-421 (1995)
[41] Mcdowell, D. L.: Simulation-based strategies for microstructure-sensitive fatigue modeling, Materials science and engineering A, 4-14 (2007)
[42] Mecking, H.; Kocks, U. F.: Kinetics of flow and strain hardening, Acta metallurgica 29, 1865-1875 (1981)
[43] Mroz, Z.: On the description of anisotropic work hardening, Journal of the mechanics and physics of solids 15, 163-175 (1967)
[44] Ohno, N.: Recent topics in constitutive modeling of cyclic plasticity and vicsoplasticity, Applied mechanics review 43, 283-295 (1990)
[45] Ohno, N.: Recent progress in constitutive modeling for ratchetting, Materials science research international 3, 1-9 (1997)
[46] Ohno, N.; Wang, J. D.: Kinematic hardening rules with critical state of dynamic recovery: I. Formulation basic features for ratchetting behaviour, International journal of plasticity 9, 373-389 (1993) · Zbl 0777.73017 · doi:10.1016/0749-6419(93)90042-O
[47] Ohno, N.; Wang, J. D.: Kinematic hardening rules with critical state of dynamic recovery: II. Application to experiments of ratchetting behaviour, International journal of plasticity 9, 390-403 (1993) · Zbl 0777.73017
[48] Rice, J. R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, Journal of the mechanics and physics of solids 19, 433-455 (1971) · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[49] Sai, K.; Cailletaud, G.: Multi-mechanism models for the description of ratchetting: effect of the scale transition rule and of the coupling between hardening variables, International journal of plasticity 23, 1589-1617 (2007) · Zbl 1134.74323 · doi:10.1016/j.ijplas.2007.01.011
[50] Sinha, S.; Ghosh, S.: Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments, International journal of fatigue 28, 1690-1704 (2006)
[51] Taleb, L.; Cailletaud, G.; Blaj, L.: Numerical simulation of complex ratcheting tests with a multi-mechanicsm model type, International journal of plasticity 22, 724-753 (2006) · Zbl 1190.74008 · doi:10.1016/j.ijplas.2005.05.003
[52] Taylor, G. I.: Mechanism of plastic deformation of crystals. Part I – theoretical, Proceedings of the royal society of London A 145, 362-387 (1934) · JFM 60.0712.02 · doi:10.1098/rspa.1934.0106
[53] Voce, E.: The relationship between stress and strain for homogeneous deformation, Journal of the institute of metals 74, 537-562 (1948)
[54] Voce, E.: A practical strain-hardening function, Metallurgica 51, 219-226 (1955)
[55] Xie, C. L.; Ghosh, S.; Groeber, M.: Modeling cyclic deformation of HSLA steels using crystal plasticity, Transactions of the ASME: journal of engineering materials and technology 126, 339-352 (2004)
[56] Yaguchi, M.; Takahashi, Y.: Ratcheting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr – 1Mo steel, International journal of plasticity 21, 43-65 (2005) · Zbl 1112.74345 · doi:10.1016/j.ijplas.2004.02.001
[57] Yoshida, F.; Kondo, J.; Kikuchi, Y.: Viscoplastic behaviour of SUS 304 stainless steel under cyclic loading at room temperature, JSME international journal series A: solid mechanics and material engineering 32, 136-141 (1989)
[58] Zhang, J.; Jiang, Y.: Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper, International journal of plasticity 24, No. 10, 1890-1915 (2008) · Zbl 1144.74005 · doi:10.1016/j.ijplas.2008.02.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.