Ding, Qing; He, Zhizhou The noncommutative KdV equation and its para-Kähler structure. (English) Zbl 1302.37045 Sci. China, Math. 57, No. 7, 1505-1516 (2014). MSC: 37K25 37K30 37K10 53C44 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{Z. He}, Sci. China, Math. 57, No. 7, 1505--1516 (2014; Zbl 1302.37045) Full Text: DOI
Ding, Qing; Wang, Youde Geometric KdV flows, motions of curves and the third-order system of the AKNS hierarchy. (English) Zbl 1228.37048 Int. J. Math. 22, No. 7, 1013-1029 (2011). MSC: 37K10 37K25 53D05 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{Y. Wang}, Int. J. Math. 22, No. 7, 1013--1029 (2011; Zbl 1228.37048) Full Text: DOI
Ding, Qing Chaotic properties between the nonintegrable discrete nonlinear Schrödinger equation and a nonintegrable discrete Heisenberg model. (English) Zbl 1129.37012 J. Phys. A, Math. Theor. 40, No. 9, 1991-2011 (2007). MSC: 37D45 37J35 81R12 82B20 PDF BibTeX XML Cite \textit{Q. Ding}, J. Phys. A, Math. Theor. 40, No. 9, 1991--2011 (2007; Zbl 1129.37012) Full Text: DOI
Wu, Jun-Yi; Ding, Qing; Tenenblat, Keti On differential equations describing 3-dimensional hyperbolic spaces. (English) Zbl 1170.35513 Commun. Theor. Phys. 45, No. 1, 135-142 (2006). MSC: 35Q53 37K25 35Q55 53A35 PDF BibTeX XML Cite \textit{J.-Y. Wu} et al., Commun. Theor. Phys. 45, No. 1, 135--142 (2006; Zbl 1170.35513) Full Text: DOI
Ding, Qing; Inoguchi, Jun-ichi Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies. (English) Zbl 1048.37058 Chaos Solitons Fractals 21, No. 3, 669-677 (2004). MSC: 37K10 37K25 53C55 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{J.-i. Inoguchi}, Chaos Solitons Fractals 21, No. 3, 669--677 (2004; Zbl 1048.37058) Full Text: DOI
Zhu, Zuonong; Tam, Honwah; Ding, Qing Infinitely many conservation laws for two integrable lattice hierarchies associated with a new discrete Schrödinger spectral problem. (English) Zbl 1020.37045 Phys. Lett., A 310, No. 4, 281-294 (2003). MSC: 37K10 81Q05 35P05 81Q10 PDF BibTeX XML Cite \textit{Z. Zhu} et al., Phys. Lett., A 310, No. 4, 281--294 (2003; Zbl 1020.37045) Full Text: DOI
Ding, Qing; Zhu, Zuonong A geometric characterization of the nonlinear Schrödinger equation. (English) Zbl 1099.37055 Sci. China, Ser. A 45, No. 10, 1225-1237 (2002). MSC: 37K25 35Q55 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{Z. Zhu}, Sci. China, Ser. A 45, No. 10, 1225--1237 (2002; Zbl 1099.37055) Full Text: DOI
Ding, Qing The Landau-Lifshitz equation and its gauge equivalent structure. (English) Zbl 1009.35079 Chen, Shuxing (ed.) et al., Geometry and nonlinear partial differential equations. Dedicated to Professor Buqing Su in honor of his 100th birthday. Proceedings of the conference, Zhejiang University, Zhejiang, China, July 30-31, 2001. Providence, RI: American Mathematical Society (AMS). AMS/IP Stud. Adv. Math. 29, 27-30 (2002). MSC: 35Q55 37K05 PDF BibTeX XML Cite \textit{Q. Ding}, AMS/IP Stud. Adv. Math. 29, 27--30 (2002; Zbl 1009.35079)
Ding, Qing Schrödinger flow and its applications in integrable systems. (English) Zbl 1046.37040 Cheng, Qing-Ming (ed.), Differential geometry. Proceedings of the first international symposium, Josai University, Saitama, Japan, February 22–24, 2001. Saitama: Josai University, Graduate School of Science. Josai Math. Monogr. 3, 23-36 (2001). Reviewer: Catalin Popa (Iaşi) MSC: 37K10 35Q55 PDF BibTeX XML Cite \textit{Q. Ding}, in: Differential geometry. Proceedings of the first international symposium, Josai University, Saitama, Japan, February 22--24, 2001. Saitama: Josai University, Graduate School of Science. 23--36 (2001; Zbl 1046.37040)
Ding, Qing A discretization of the matrix nonlinear Schrödinger equation. (English) Zbl 0970.39016 J. Phys. A, Math. Gen. 33, No. 38, 6769-6778 (2000). Reviewer: B.G.Pachpatte (Aurangabad) MSC: 39A12 35Q55 37K10 PDF BibTeX XML Cite \textit{Q. Ding}, J. Phys. A, Math. Gen. 33, No. 38, 6769--6778 (2000; Zbl 0970.39016) Full Text: DOI
Ding, Qing The \(\text{NLS}^-\) equation and its \(\text{SL}(2,{\mathbb{R}})\) structure. (English) Zbl 0960.35092 J. Phys. A, Math. Gen. 33, No. 34, L325-L329 (2000). MSC: 35Q55 37K25 37K10 PDF BibTeX XML Cite \textit{Q. Ding}, J. Phys. A, Math. Gen. 33, No. 34, L325--L329 (2000; Zbl 0960.35092) Full Text: DOI
Ding, Qing On the gauge equivalent structure of the discrete nonlinear Schrödinger equation. (English) Zbl 0949.37048 Phys. Lett., A 266, No. 2-3, 146-154 (2000). MSC: 37K10 35Q55 PDF BibTeX XML Cite \textit{Q. Ding}, Phys. Lett., A 266, No. 2--3, 146--154 (2000; Zbl 0949.37048) Full Text: DOI
Ding, Qing The gauge equivalence of the NLS and the Schrödinger flow of maps in \(2+1\) dimensions. (English) Zbl 0941.35104 J. Phys. A, Math. Gen. 32, No. 27, 5087-5096 (1999). MSC: 35Q55 37K10 35Q53 81Q05 82B20 PDF BibTeX XML Cite \textit{Q. Ding}, J. Phys. A, Math. Gen. 32, No. 27, 5087--5096 (1999; Zbl 0941.35104) Full Text: DOI