Ding, Qing; Zhang, Yongqian Local isometric embeddings of surfaces into a 3-space. (English) Zbl 0967.53039 Chin. Ann. Math., Ser. B 20, No. 2, 215-222 (1999). The aim of this paper is to prove that any abstract smooth surface can be locally isometrically embedded into a class of 3-dimensional spaces \(N_{\rho_0}\), parametered by \(\rho_0 >0\), with sectional curvature \(K_{N_{\rho_0}}\) satisfying \(-{1\over \rho^2_0}\leq K_{N_{\rho_0}} \leq 0\). Reviewer: A.Neagu (Iaşi) Cited in 1 Document MSC: 53C40 Global submanifolds 53C20 Global Riemannian geometry, including pinching Keywords:local isometric embedding; Riemannian manifold; Gauss curvature; sectional curvature PDF BibTeX XML Cite \textit{Q. Ding} and \textit{Y. Zhang}, Chin. Ann. Math., Ser. B 20, No. 2, 215--222 (1999; Zbl 0967.53039) Full Text: DOI