×

zbMATH — the first resource for mathematics

The transmission property of the discrete Heisenberg ferromagnetic spin chain. (English) Zbl 1152.81401
Summary: We present a mechanism for displaying the transmission property of the discrete Heisenberg ferromagnetic (DHF) spin chain via a geometric approach. With the aid of a discrete nonlinear Schrödinger-like equation which is the discrete gauge equivalent to the DHF, we show that the determination of transmitting coefficients in the transmission problem is always bistable. Thus, a definite algorithm and general stochastic algorithms are presented. A new invariant periodic phenomenon of the nontransmitting behavior for the DHF, with a large probability, is revealed by an adoption of various stochastic algorithms.

MSC:
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1088/0305-4470/20/12/018 · Zbl 0638.58033 · doi:10.1088/0305-4470/20/12/018
[2] DOI: 10.1016/0550-3213(91)90410-Y · doi:10.1016/0550-3213(91)90410-Y
[3] DOI: 10.1143/JPSJ.51.3417 · doi:10.1143/JPSJ.51.3417
[4] DOI: 10.1063/1.529658 · Zbl 1112.82309 · doi:10.1063/1.529658
[5] DOI: 10.1103/PhysRevB.53.R2930 · doi:10.1103/PhysRevB.53.R2930
[6] DOI: 10.1063/1.532715 · Zbl 1059.82509 · doi:10.1063/1.532715
[7] DOI: 10.1016/S0375-9601(00)00027-X · Zbl 0949.37048 · doi:10.1016/S0375-9601(00)00027-X
[8] DOI: 10.1080/00018739100101492 · doi:10.1080/00018739100101492
[9] DOI: 10.1007/BF01328601 · doi:10.1007/BF01328601
[10] DOI: 10.1007/BF01341708 · doi:10.1007/BF01341708
[11] DOI: 10.1088/0022-3719/15/36/008 · doi:10.1088/0022-3719/15/36/008
[12] DOI: 10.1007/BF01030253 · doi:10.1007/BF01030253
[13] DOI: 10.1007/978-3-540-69969-9 · Zbl 1111.37001 · doi:10.1007/978-3-540-69969-9
[14] DOI: 10.1143/JPSJ.72.49 · Zbl 1071.82573 · doi:10.1143/JPSJ.72.49
[15] DOI: 10.1088/1751-8113/40/9/006 · Zbl 1129.37012 · doi:10.1088/1751-8113/40/9/006
[16] DOI: 10.1103/PhysRevLett.57.2010 · doi:10.1103/PhysRevLett.57.2010
[17] DOI: 10.1103/PhysRevLett.62.2065 · doi:10.1103/PhysRevLett.62.2065
[18] DOI: 10.1103/PhysRevA.41.800 · doi:10.1103/PhysRevA.41.800
[19] DOI: 10.1103/PhysRevE.52.255 · doi:10.1103/PhysRevE.52.255
[20] Flytzanis C., Nonlinear Phenomenon in Solids (1985)
[21] DOI: 10.1142/S0217979201007105 · doi:10.1142/S0217979201007105
[22] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2. ed. (1998) · Zbl 0914.58021
[23] Grimshaw R., Nonlinear Ordinary Differential Equations (1990) · Zbl 0743.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.