×

An SIR epidemic model with vaccination in a patchy environment. (English) Zbl 1367.34057

Summary: In this paper, an SIR patch model with vaccination is formulated to investigate the effect of vaccination coverage and the impact of human mobility on the spread of diseases among patches. The control reproduction number \(\mathfrak{R}_v\) is derived. It shows that the disease-free equilibrium is unique and is globally asymptotically stable if \(\mathfrak{R}_v<1\), and unstable if \(\mathfrak{R}_v>1\). The sufficient condition for the local stability of boundary equilibria and the existence of equilibria are obtained for the case \(n=2\). Numerical simulations indicate that vaccines can control and prevent the outbreak of infectious in all patches while migration may magnify the outbreak size in one patch and shrink the outbreak size in other patch.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D23 Global stability of solutions to ordinary differential equations
92D30 Epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. E. Alexander, A vaccination model for transmission dynamics of influenza,, SIAM J. Appl. Dyn. Syst., 3, 503 (2004) · Zbl 1067.92051 · doi:10.1137/030600370
[2] J. Arino, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64, 260 (2003) · Zbl 1034.92025 · doi:10.1137/S0036139902413829
[3] J. Arino, Quarantine in a multi-species epidemics model with spatial dynamics,, Math. Biosci., 206, 46 (2007) · Zbl 1124.92042 · doi:10.1016/j.mbs.2005.09.002
[4] P. Auger, The Ross-Macdonald model in a patchy environment,, Math. Biosci., 216, 123 (2008) · Zbl 1153.92026 · doi:10.1016/j.mbs.2008.08.010
[5] A. Berman, <em>Nonnegative Matrices in the Mathematical Sciences,</em>, Philadelphia (1994) · Zbl 0815.15016 · doi:10.1137/1.9781611971262
[6] <em>World Health Organization, Ebola response roadmap - Situation report update 3 December 2014,</em>, website: URL <a href=
[7] F. Brauer, Oscillations in a patchy environment disease model,, Math. Biosci., 215, 1 (2008) · Zbl 1176.34098 · doi:10.1016/j.mbs.2008.05.001
[8] C. Castillo-Chavez, Asymptotically autonomous epidemic models,, in O. Arino, 33 (1995)
[9] O. Diekmann, The construction of next-generation matrices for compartmental epidemic models,, J. R. Soc. Interface, 7, 873 (2010) · doi:10.1098/rsif.2009.0386
[10] P. van den Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180, 29 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[11] M. C. Eisenberg, A cholera model in a patchy environment with water and human movement,, Math. Biosci., 246, 105 (2013) · Zbl 1309.92073 · doi:10.1016/j.mbs.2013.08.003
[12] <em>How Many Ebola Patients Have Been Treated Outside of Africa?</em>, website: <a href=
[13] D. Gao, A multipathc malaria model with Logistic growth populations,, SIAM J. Appl. Math., 72, 819 (2012) · Zbl 1250.92029 · doi:10.1137/110850761
[14] D. Gao, <em>Malaria Models with Spatial Effects</em>,, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (2015) · doi:10.1002/9781118630013.ch6
[15] D. Gao, An SIS patch model with variable transmission coefficients,, Math. Biosci., 232, 110 (2011) · Zbl 1218.92064 · doi:10.1016/j.mbs.2011.05.001
[16] H. Guo, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Can. Appl. Math. Q., 14, 259 (2006) · Zbl 1148.34039
[17] <em>Vaccination</em>,, website: <a href= · Zbl 0956.92031
[18] Immunisation Advisory Centre, <em>A Brief History of Vaccination</em>,, website: <a href=
[19] K. E. Jones, Global trends in emerging infectious diseases,, Nature, 451, 990 (2008) · doi:10.1038/nature06536
[20] J. P. LaSalle, <em>The Stability of Dynamical systems, Regional Conference Series in Applied Mathematics,</em>, SIAM (1976) · Zbl 0364.93002
[21] S. Ruan, The effect of global travel on the spread of SARS,, Math. Biosci. Eng., 3, 205 (2006) · Zbl 1089.92049 · doi:10.3934/mbe.2006.3.205
[22] H. L. Smith, <em>The Theory of the Chemostat</em>,, Cambridge University (1995) · Zbl 1139.92029 · doi:10.1017/CBO9780511530043
[23] C. Sun, Effect of media-induced social distancing on disease transmission in a two patch setting,, Math. Biosci., 230, 87 (2011) · Zbl 1211.92051 · doi:10.1016/j.mbs.2011.01.005
[24] W. Wang, An epidemic model in a patchy environment,, Math. Biosci., 190, 97 (2004) · Zbl 1048.92030 · doi:10.1016/j.mbs.2002.11.001
[25] W. Wang, An epidemic model with population dispersal and infection period,, SIAM J. Appl. Math., 66, 1454 (2006) · Zbl 1094.92055 · doi:10.1137/050622948
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.