×

zbMATH — the first resource for mathematics

“Wunderlich, meet Kirchhoff”: a general and unified description of elastic ribbons and thin rods. (English) Zbl 06432953
Summary: The equations for the equilibrium of a thin elastic ribbon are derived by adapting the classical theory of thin elastic rods. Previously established ribbon models are extended to handle geodesic curvature, natural out-of-plane curvature, and a variable width. Both the case of a finite width (Wunderlich’s model) and the limit of small width (Sadowksky’s model) are recovered. The ribbon is assumed to remain developable as it deforms, and the direction of the generatrices is used as an internal variable. Internal constraints expressing inextensibility are identified. The equilibrium of the ribbon is found to be governed by an equation of equilibrium for the internal variable involving its second-gradient, by the classical Kirchhoff equations for thin rods, and by specific, thin-rod-like constitutive laws; this extends the results of Starostin and van der Heijden (Nat. Mater. 6(8):563-567, 2007) to a general ribbon model. Our equations are applicable in particular to ribbons having geodesic curvature, such as an annulus cut out in a piece of paper. Other examples of application are discussed. By making use of a material frame rather than the Frenet-Serret frame, the present work unifies the description of thin ribbons and thin rods.

MSC:
74K20 Plates
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G65 Energy minimization in equilibrium problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E., Geometry and mechanics in the opening of chiral seed pods, Science (New York), 333, 1726-1730, (2011)
[2] Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press, London (2010) · Zbl 1223.74001
[3] Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B.; Grinspun, E., Discrete elastic rods, ACM Trans. Graph., 27, 63:1-63:12, (2008)
[4] Cheng-Chung, H., A differential-geometric criterion for a space curve to be closed, Proceedings of the American Mathematical Society, 83, 357-361, (1981) · Zbl 0477.53001
[5] Chopin, J.; Kudrolli, A., Helicoids, wrinkles, and loops in twisted ribbons, Phys. Rev. Lett., 111, (2013) · Zbl 1402.74037
[6] Chouaïeb, N.: Kirchhoff’s problem of helical solutions of uniform rods and stability properties. Ph.D. thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland (2003) · JFM 63.1329.02
[7] Cohen, H., A non-linear theory of elastic directed curves, International Journal of Engineering Science, 4, 511-524, (1966)
[8] Coleman, B.; Swigon, D., Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids, Journal of Elasticity, 60, 173-221, (2000) · Zbl 1014.74038
[9] Cosserat, E., Cosserat, F.: Théorie des Corps déformables. A. Hermann et Fils, Paris (1909) · JFM 40.0862.02
[10] Dias, M.A.; Audoly, B., A non-linear rod model for folded elastic strips, J. Mech. Phys. Solids, 62, 57-80, (2014) · Zbl 1323.74044
[11] Dias, M.A.; Dudte, L.H.; Mahadevan, L.; Santangelo, C.D., Geometric mechanics of curved crease origami, Phys. Rev. Lett., 109, 1-5, (2012)
[12] Efimov, N.V., Some problems in the theory of space curves, Uspekhi Mat. Nauk, 2, 193-194, (1947)
[13] Ericksen, J.L., Simpler static problems in nonlinear theories of rods, International Journal of Solids and Structures, 6, 371-377, (1970) · Zbl 0213.26805
[14] Frenchel, W., On the differential geometry of closed space curves, Bulletin of the American Mathematical Society, 57, 44-54, (1951) · Zbl 0042.40006
[15] Giomi, L.; Mahadevan, L., Statistical mechanics of developable ribbons, Phys. Rev. Lett., 104, (2010) · Zbl 1364.74064
[16] Green, A.E., The elastic stability of a thin twisted strip. II, Proc. R. Soc. Lond. A, 161, 197-220, (1937) · JFM 63.1329.02
[17] Korte, A.P.; Starostin, E.L.; Heijden, G.H.M., Triangular buckling patterns of twisted inextensible strips, Proc. R. Soc. A, Math. Phys. Eng. Sci., 467, 285-303, (2010) · Zbl 1219.74017
[18] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944) · Zbl 0063.03651
[19] Mahadevan, L.; Keller, J.B., The shape of a Möbius band, Proc. R. Soc. A, Math. Phys. Eng. Sci., 440, 149-162, (1993) · Zbl 0786.73041
[20] Mockensturm, E.M., The elastic stability of twisted plates, J. Appl. Mech., 68, 561-567, (2001) · Zbl 1110.74588
[21] Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbares Möbiusschen Bandes und Zurückfürung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. 22, 412-415 (1930) · JFM 56.0601.02
[22] Seffen, K.A., Audoly, B.: Buckling of a closed, naturally curved ribbon (2014, in preparation) · Zbl 1423.74455
[23] Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish, Inc., Houston (1999) · Zbl 1213.53001
[24] Starostin, E.; Heijden, G., Tension-induced multistability in inextensible helical ribbons, Phys. Rev. Lett., 101, (2008)
[25] Starostin, E.L.; Heijden, G.H.M., The shape of a Möbius strip, Nat. Mater., 6, 563-567, (2007)
[26] Steigmann, D.J.; Faulkner, M.G., Variational theory for spatial rods, J. Elast., 33, 1-26, (1993) · Zbl 0801.73039
[27] Wu, Z.L.; Moshe, M.; Greener, J.; Therien-Aubin, H.; Nie, Z.; Sharon, E.; Kumacheva, E., Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses, Nat. Commun., 4, 1586, (2013)
[28] Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66(3), 276-289 (1962). http://link.springer.com/10.1007/BF01299052. doi:10.1007/BF01299052 · Zbl 0105.14802
[29] Yang, Y.; Tobias, I.; Olson, W.K., Finite element analysis of DNA supercoiling, J. Chem. Phys., 98, 1673-1686, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.