×

3D finite volume simulation of acoustic waves in the Earth atmosphere. (English) Zbl 1242.76160

Summary: We present a very high-order Finite Volume discretization of the 3D linearized convective Euler equations for the simulation of acoustic waves in the Earth atmosphere. We also derive a weakly nonlinear model for the approximation of N-waves. We discuss the use and the implementation of these methods on massively parallel computers based on our experience on the Bull-TERA 10 parallel HPC machine at the CEA. Verification-validation is done in dimension two and three with physical data obtained from a large-scale physical experiment.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auger, T.; Coulouvrat, F., Numerical simulation of sonic boom focusing, J Acoust Soc Am, 111, 1, 499-508 (2002)
[2] Attenborough, K., Benchmark cases for outdoor sound propagation models, J Acoust Soc Am, 97, 1, 173-191 (1995)
[3] Bailly, C.; Bogey, Numerical solution of acoustic propagation problems using linearized Euler equations, AIAA J, 38, 1, 22-29 (2000)
[4] Bogey, C.; Bailly, C.; Juvé, D., Computation of flow noise using source terms in linearized Euler equations, AIAA J, 40, 2, 235-243 (2003) · Zbl 1051.76064
[5] Daru, V.; Tenaud, C., High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations, J Comput Phys, 193, 2 (2004) · Zbl 1109.76338
[6] Del Pino S, Jourdren H, Arbitrary high-order schemes for linear advection and waves equations: applications to hydrodynamics and aeroacoustic. In: CRAS Paris; 2006.; Del Pino S, Jourdren H, Arbitrary high-order schemes for linear advection and waves equations: applications to hydrodynamics and aeroacoustic. In: CRAS Paris; 2006. · Zbl 1088.65078
[7] Despres, B., Finite volume transport schemes, Numer Math, 108, 529-556 (2008) · Zbl 1140.65058
[8] Gainville, O.; Piserchia, P. F.; Blanc-benon, P.; Scott, J., AIAA 2006-2451 (2006)
[9] Godlevski E, Raviart PA, Numerical approximation of hyperbolic systems of conservation laws, AMS 118. Springer Verlag, New York.; Godlevski E, Raviart PA, Numerical approximation of hyperbolic systems of conservation laws, AMS 118. Springer Verlag, New York.
[10] Kozubskaya T, Abalakin I, Dervieux A, Mathematical model and high accuracy numerical techniques for solving computational aeroacoustic problems, In: International conference on selected problems of modern mathematics, Kalinigrad; 2005.; Kozubskaya T, Abalakin I, Dervieux A, Mathematical model and high accuracy numerical techniques for solving computational aeroacoustic problems, In: International conference on selected problems of modern mathematics, Kalinigrad; 2005.
[11] Landau E, Lifshitz Mécanique, des fluides. MIR; 1971.; Landau E, Lifshitz Mécanique, des fluides. MIR; 1971.
[12] Laurent, A.; Joly, P.; Tran, Q. H., Construction and analysis of higher order finite difference schemes for the 1D wave equation, Comput Geosci, 4, 3, 207-249 (2000) · Zbl 0968.65060
[13] Lehr D, Misty picture event, test execution report, ADA283521; 1987.; Lehr D, Misty picture event, test execution report, ADA283521; 1987.
[14] Lightill, M. J., An informal introduction to theoretical fluid mechanics (1986), Oxford University Press: Oxford University Press Oxford
[15] Lightill MJ. On sound generated aerodynamically. I. General theory. Proc Roy Soc Lond A Math Phys Sci, 1952; 211(1107):564-587.; Lightill MJ. On sound generated aerodynamically. I. General theory. Proc Roy Soc Lond A Math Phys Sci, 1952; 211(1107):564-587.
[16] G.M. Lilley, The generation and radiation of supersonic jet noise. Vol 4: Theory of turbulent generated jet noise, noise radiation from upstream sources, and combustion noise. Part II: Generation of noise in a mixed region, U.S. Air Force Aeropropulsion Lab., AFAPL-TR-75-53, vol. 4, Wright-Patterson AFB, OH; 1972.; G.M. Lilley, The generation and radiation of supersonic jet noise. Vol 4: Theory of turbulent generated jet noise, noise radiation from upstream sources, and combustion noise. Part II: Generation of noise in a mixed region, U.S. Air Force Aeropropulsion Lab., AFAPL-TR-75-53, vol. 4, Wright-Patterson AFB, OH; 1972.
[17] Marchiano, R.; Coulouvrat, F., Non linear focusing of acoustic shocks at caustic cusp, J Acoust Soc Am, 117, 2, 566-577 (2005)
[18] Munz, D.; Fortenbach, R.; Dumbser, M., Multiple-scale modeling of acoustic source in low Mach-number flow, Comptes Rendus de mécanique, 333, 706-712 (2005) · Zbl 1204.76032
[19] Strang, G., Introduction to linear algebra (2003), Wellesley-Cambridge Press · Zbl 1046.15001
[20] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, JCP, 107, 262-282 (1993) · Zbl 0790.76057
[21] Toro, E. F.; Titarev, V. A., Ader schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions, JCP, 202, 196-215 (2005) · Zbl 1061.65103
[22] Toro, E. F.; Titarev, V. A., Ader schemes for three dimensional non-linear hyperbolic systems, JCP, 204, 715-736 (2005) · Zbl 1060.65641
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.