×

zbMATH — the first resource for mathematics

Complete convergence and convergence rates in Marcinkiewicz law of large numbers for random variables indexed by \(Z_+^d\). (English) Zbl 0946.60027
The author proves some special convergence rate results in strong laws for multidimensionally indexed i.i.d. random variables; the components in the normalizations are raised to different powers. For example, instead of the standard \(P(|S_{n,m} |\geq \varepsilon n\cdot m)\) the author considers \(P(|S_{n,m}|\geq\varepsilon n^{1/ \alpha}\cdot m^{1/ \beta})\), where \(\alpha,\beta>0\).
Reviewer: A.Gut (Uppsala)

MSC:
60F15 Strong limit theorems
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite