Deng, D. Convergence rates for probabilities of moderate deviation for sums of random variables indexed by \(Z_ +^ d\). (English) Zbl 0822.60023 Acta Math. Hung. 67, No. 1-2, 131-149 (1995). Let \(X\), \(X_{\overline{n}}\), \(\overline {n} \in \mathbb{Z}^ d_ +\), be a sequence of i.i.d. real random variables, and \(S_{\overline {n}} = \sum_{\overline {k} \leq \overline {n}} X_{\overline {k}}\), \(\overline{n} \in Z^ d_ +\). Convergence rates of moderate deviation are derived, i.e., the rates of convergence to zero of certain tail probabilities of the partial sums are determined. For example, we obtain sufficient conditions and necessary conditions for the convergence of series \[ \sum_{\overline {n}} b(\overline{n}) P \{| S_{\overline {n}} | \geq \varepsilon(a^ 2 (\overline {n}) \log a^ 2 (\overline {n}))^{1/2}\}, \] where \(a(\overline {n}) = n^{1/\alpha_ 1}_ 1 \dots n^{1/\alpha_ d}_ d\), \(b(\overline {n}) = n^{\beta_ 1}_ 1 \dots n^{\beta_ d}_ d\). We also give the corresponding results for \(P\{ | S_{\overline{n}}| \geq \varepsilon(a^ 2 (\overline{n}) \log_ 2 a^ 2 (\overline {n}))^{1/2}\}\) which give connection to the law of the iterated logarithm. These results generalize and improve some previous work of A. Gut [Ann. Probab. 8, 298-313 (1980; Zbl 0429.60022)]. Reviewer: D.Deng (Changchun) Cited in 2 Documents MSC: 60F10 Large deviations 60B12 Limit theorems for vector-valued random variables (infinite-dimensional case) 60F99 Limit theorems in probability theory Keywords:convergence rates; multidimensional indices; moderate deviation; law of the iterated logarithm PDF BibTeX XML Cite \textit{D. Deng}, Acta Math. Hung. 67, No. 1--2, 131--149 (1995; Zbl 0822.60023) Full Text: DOI References: [1] J. A. Davis, Convergence rates for the law of the iterated logarithm,Ann. Math. Statist.,39 (1968), 1479–1485. · Zbl 0174.49902 [2] J. A. Davis, Convergence rates for probabilities of moderate deviations,Ann. Math. Statist.,39 (1968), 2016–2028. · Zbl 0196.20901 · doi:10.1214/aoms/1177698029 [3] N. V. Giang, On moments of the supremum of normed partial sums of random variables indexed byN k ,Acta Math. Hungar.,60 (1992), 73–80. · Zbl 0780.60045 · doi:10.1007/BF00051758 [4] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices,Ann. Probab.,6 (1978), 469–482. · Zbl 0383.60030 · doi:10.1214/aop/1176995531 [5] A. Gut, Convergence rates for probabiliteis of moderate deviations for sums of random variables with multidimensional indices,Ann. Probab.,8 (1980), 298–313. · Zbl 0429.60022 · doi:10.1214/aop/1176994778 [6] U. I. Klesov, Strong law of large numbers for multiple sums of independent identically distributed random variables,Mat. Zametki,38 (1985), 915–930 (in Russian). · Zbl 0591.60026 [7] V. V. Petrov,Sums of Independent Random Variables. Springer-Verlag. 1975. · Zbl 0322.60043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.