zbMATH — the first resource for mathematics

The forward-backward asymmetry for massive bottom quarks at the \(Z\) peak at next-to-next-to-leading order QCD. (English) Zbl 1373.81373
Summary: We compute the order \(\alpha_{s}^{2}\) QCD corrections to the \(b\)-quark forward-backward asymmetry in \( {e}^{+}{e}^{-}\rightarrow b\overline{b} \) collisions at the \(Z\) boson resonance, taking the non-zero mass of the \(b\) quark into account. We determine these corrections with respect to both the \(b\)-quark axis and the thrust axis definition of the asymmetry. We compute also the distributions of these axes with respect to the electron beam. If one neglects the flavor singlet contributions to the \(b\)-quark asymmetry, as was done in previous computations for massless \(b\) quarks, then the second-order QCD corrections for \(m_b \neq 0\) are smaller in magnitude than the corresponding corrections for \(m_b=0\). Including the singlet contributions slightly increases the magnitude of the corrections. The massive \(\alpha_{s}^{2}\) corrections to the \(b\)-quark forwardbackward asymmetry slightly diminish the well-known tension between the bare \(b\)-quark asymmetry and the standard model fit from \(2.9\sigma\) to \(2.6\sigma\).
81V05 Strong interaction, including quantum chromodynamics
81U30 Dispersion theory, dispersion relations arising in quantum theory
Full Text: DOI
[1] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
[2] Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0 and L3 collaborations, L.E.W. Group, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].
[3] ECFA/DESY LC Physics Working Group collaboration, J.A. Aguilar-Saavedra et al., TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e\^{}{+}\(e\)\^{}{−}linear collider, hep-ph/0106315 [INSPIRE].
[4] H. Baer et al., The International Linear Collider Technical Design ReportVolume 2: Physics, arXiv:1306.6352 [INSPIRE].
[5] TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
[6] R. Hawkings and K. Mönig, Electroweak and CP-violation physics at a linear collider Z factory, Eur. Phys. J. directC 1 (1999) 8 [hep-ex/9910022] [INSPIRE].
[7] J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P.M. Zerwas, Physics impact of GigaZ, Phys. Lett.B 486 (2000) 125 [hep-ph/0005024] [INSPIRE].
[8] M. Böhm et al., Forward-Backward Asymmetries, in: CERN Yellow Report Z Physics at LEP 1, G. Altarelli et al. eds., CERN 89-08 (1989).
[9] D. Yu. Bardin et al., ZFITTER v.6.21: A Semianalytical program for fermion pair production in e\^{}{+}\(e\)\^{}{−}annihilation, Comput. Phys. Commun.133 (2001) 229 [hep-ph/9908433] [INSPIRE].
[10] A. Freitas and K. Mönig, Corrections to quark asymmetries at LEP, Eur. Phys. J.C 40 (2005) 493 [hep-ph/0411304] [INSPIRE].
[11] J. Jersak, E. Laermann and P.M. Zerwas, Electroweak Production of Heavy Quarks in e\^{}{+}\(e\)\^{}{−}Annihilation, Phys. Rev.D 25 (1982) 1218 [Erratum ibid.D 36 (1987) 310] [INSPIRE].
[12] A.B. Arbuzov, D. Yu. Bardin and A. Leike, Analytic final state corrections with cut for e\^{}{+}\(e\)\^{}{−} → massive fermions, Mod. Phys. Lett.A 7 (1992) 2029 [Erratum ibid.A 9 (1994) 1515] [INSPIRE].
[13] A. Djouadi, B. Lampe and P.M. Zerwas, A Note on the QCD corrections to forward-backward asymmetries of heavy quark jets in Z decays, Z. Phys.C 67 (1995) 123 [hep-ph/9411386] [INSPIRE].
[14] Gao, J.; Zhu, HX, Top quark forward-backward asymmetry in e\^{}{+}e\^{}{−} annihilation at next-to-next-to-leading order in QCD, Phys. Rev. Lett., 113, 262001, (2014)
[15] Chen, L.; Dekkers, O.; Heisler, D.; Bernreuther, W.; Si, Z-G, Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions, JHEP, 12, 098, (2016)
[16] Czakon, M.; Fiedler, P.; Mitov, A., Resolving the tevatron top quark forward-backward asymmetry puzzle: fully differential next-to-next-to-leading-order calculation, Phys. Rev. Lett., 115, 052001, (2015)
[17] Altarelli, G.; Lampe, B., Second order QCD corrections to heavy quark forward-backward asymmetries, Nucl. Phys., B 391, 3, (1993)
[18] V. Ravindran and W.L. van Neerven, Second order QCD corrections to the forward-backward asymmetry in e\^{}{+}\(e\)\^{}{−}collisions, Phys. Lett.B 445 (1998) 214 [hep-ph/9809411] [INSPIRE].
[19] S. Catani and M.H. Seymour, Corrections of O(\(α\)_{\(s\)}\^{}{2}) to the forward backward asymmetry, JHEP07 (1999) 023 [hep-ph/9905424] [INSPIRE].
[20] S. Weinzierl, The Forward-backward asymmetry at NNLO revisited, Phys. Lett.B 644 (2007) 331 [hep-ph/0609021] [INSPIRE].
[21] A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J.C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
[22] W. Bernreuther et al., Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD, Nucl. Phys.B 750 (2006) 83 [hep-ph/0604031] [INSPIRE].
[23] LEP Heavy Flavor Working Group collaboration, D. Abbaneo et al., QCD corrections to the forward-backward asymmetries of c and b quarks at the Z pole, Eur. Phys. J.C 4 (1998) 185 [INSPIRE].
[24] LEP/SLD heavy flavour working group collaboration, Final Input Parameters for the LEP/SLD Heavy Flavour Analyses, LEPHF/2001-01 (2001), http://lepewwg.web.cern.ch/LEPEWWG/heavy/.
[25] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys.B 706 (2005) 245 [hep-ph/0406046] [INSPIRE]. · Zbl 1137.81380
[26] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions, Nucl. Phys.B 712 (2005) 229 [hep-ph/0412259] [INSPIRE]. · Zbl 1109.81370
[27] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys.B 723 (2005) 91 [hep-ph/0504190] [INSPIRE]. · Zbl 1137.81380
[28] Farhi, E., A QCD test for jets, Phys. Rev. Lett., 39, 1587, (1977)
[29] S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett.12 (1964) 57 [INSPIRE].
[30] Brandt, S.; Dahmen, HD, Axes and scalar measures of two-jet and three-jet events, Z. Phys., C 1, 61, (1979)
[31] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE]. · Zbl 1368.81015
[32] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in e\^{}{+}e\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[33] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.