×

Simulations of intermittent two-phase flows in pipes using smoothed particle hydrodynamics. (English) Zbl 1410.76350

Summary: Slug flows are a typical intermittent two-phase flow pattern that can occur in submarine pipelines connecting the wells to the production facility and that is known to cause undesired consequences. In this context, computational fluid dynamics appears to be the tool of choice to understand their formation. However, few direct numerical simulations of slug flows are available in the literature, especially using meshless methods which are known to be capable of handling complex problems involving interfaces. In this work, a 2D study of the instability processes leading to the formation of intermittent flows in pipes is conducted using an existing multiphase smoothed particle hydrodynamics formulation associated with inlet and outlet boundary conditions. This paper aims to demonstrate the applicability of smoothed particle hydrodynamics to a given set of close-to-industry cases. First, we check the ability of our implementation to reproduce flow regimes predicted by Taitel and Duckler’s flow map. Then, we focus on the transition processes from one flow pattern to the other. Finally, we present the results obtained for more realistic cases with high density and viscosity ratios.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Al-Hashimy, Z. I.; Al-Kayiem, H. H.; Time, R. W.; Kadhim, Z. K., Numerical characterisation of slug flow in horizontal air/water pipe flow, Int J Comput Methods Exp Measur, 4, 2, 114-130, (2016)
[2] Alvarado-Rodríguez, C. E.; Klapp, J.; Sigalotti, L. D.G.; Domínguez, J. M.; de la Cruz Sánchez, E., Nonreflecting outlet boundary conditions for incompressible flows using sph, Comput Fluids, 159, 177-188, (2017) · Zbl 1390.76694
[3] Baker, O., Design of pipelines for the simultaneous flow of oil and gas, Fall meeting of the petroleum branch of AIME, (1953), Society of Petroleum Engineers
[4] Barnea, D., A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations, Int J Multiphase Flow, 13, 1, 1-12, (1987)
[5] Belt, R.; Duret, E.; Larrey, D.; Djoric, B.; Kalali, S., Comparison of commercial multiphase flow simulators with experimental and field databases, 15th international conference on multiphase production technology, (2011), BHR Group: BHR Group Cannes, France
[6] Bendiksen, K. H.; Maines, D.; Moe, R.; Nuland, S., The dynamic two-fluid model olga: theory and application, SPE, (1991)
[7] Bonet, J.; Lok, T.-S., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput Methods Appl Mech Eng, 180, 1, 97-115, (1999) · Zbl 0962.76075
[8] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354, (1992) · Zbl 0775.76110
[9] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J Comput Phys, 191, 2, 448-475, (2003) · Zbl 1028.76039
[10] Dehnen, W.; Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon Not R Astron Soc, 425, 2, 1068-1082, (2012)
[11] Dong, S.; Karniadakis, G.; Chryssostomidis, C., A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains, J Comput Phys, 261, 83-105, (2014) · Zbl 1349.76569
[12] Douillet-Grellier, T.; Vuyst, F. D.; Calandra, H.; Ricoux, P., Influence of the spurious interface fragmentation correction on the simulation of flow regimes, Proceedings of the international 13th SPHERIC workshop, June 26-28, Galway, Ireland, (2018)
[13] Fabre, J.; Line, A., Modeling of two-phase slug flow, Annu Rev Fluid Mech, 24, 1, 21-46, (1992) · Zbl 0757.76072
[14] Ferrand, M.; Joly, A.; Kassiotis, C.; Violeau, D.; Leroy, A.; Morel, F.-X., Unsteady open boundaries for sph using semi-analytical conditions and riemann solver in 2d, Comput Phys Commun, 210, 29-44, (2017) · Zbl 1376.76048
[15] Ferrand, M.; Laurence, D. R.; Rogers, B. D.; Violeau, D.; Kassiotis, C., Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method, Int J Numer Methods Fluids, 71, 4, 446-472, (2012)
[16] Flekkoy, E. G.; Coveney, P. V.; De Fabritiis, G., Foundations of dissipative particle dynamics, Phys Rev E, 62, 2140-2157, (2000)
[17] Friedel, L., Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, European two-phase flow group meeting, Ispra, Italy, (1979), European Two-Phase Flow Group
[18] Fukagata, K.; Kasagi, N.; Ua-arayaporn, P.; Himeno, T., Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube, Int J Heat Fluid Flow, 28, 1, 72-82, (2007)
[19] Ghaitanellis, A., Modélisation du charriage sédimentaire par une approche granulaire avec sph, (2017), Université Paris-Est, Ph.D. Thesis
[20] Ghia, U.; Ghia, K.; Shin, C., High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method, J Comput Phys, 48, 3, 387-411, (1982) · Zbl 0511.76031
[21] Gingold, R.; Monaghan, J., Smoothed particle hydrodynamics-theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389, (1977) · Zbl 0421.76032
[22] Grenier, N.; Antuono, M.; Colagrossi, A.; Touzé, D. L.; Alessandrini, B., An hamiltonian interface sph formulation for multi-fluid and free surface flows, J Comput Phys, 228, 22, 8380-8393, (2009) · Zbl 1333.76056
[23] Hammani, I.; Oger, G.; Touzé, D. L.; Colagrossi, A.; Marrone, S., How to derive the multi-fluid delta-sph model, Proceedings of the international 13th SPHERIC workshop, June 26-28, Galway, Ireland, (2018)
[24] He, Q.; Kasagi, N., Phase-field simulation of small capillary-number two-phase flow in a microtube, Fluid Dyn Res, 40, 7-8, 497-509, (2008) · Zbl 1281.76044
[25] Hewitt G.F. Two-Phase Flows. In: A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, Begellhouse.; Hewitt G.F. Two-Phase Flows. In: A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, Begellhouse. · Zbl 0060.39511
[26] Hu, X.; Adams, N., A multi-phase SPH method for macroscopic and mesoscopic flows, J Comput Phys, 213, 2, 844-861, (2006) · Zbl 1136.76419
[27] Hu, X.; Adams, N., An incompressible multi-phase sph method, J Comput Phys, 227, 1, 264-278, (2007) · Zbl 1126.76045
[28] Khorasanizade, S.; Sousa, J. M.M., An innovative open boundary treatment for incompressible sph, Int J Numer Methods Fluids, 80, 3, 161-180, (2016)
[29] Kongsberg, Ledaflow - the new multiphase simulator: user guide, (2014), Kongsberg
[30] Kunz, P.; Hirschler, M.; Huber, M.; Nieken, U., Inflow/outflow with dirichlet boundary conditions for pressure in isph, J Comput Phys, 326, 171-187, (2016)
[31] Kunz, P.; Zarikos, I. M.; Karadimitriou, N. K.; Huber, M.; Nieken, U.; Hassanizadeh, S. M., Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments, Transp Porous Media, 114, 2, 581-600, (2015)
[32] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with surfer, J Comput Phys, 113, 1, 134-147, (1994) · Zbl 0809.76064
[33] Lastiwka, M.; Basa, M.; Quinlan, N. J., Permeable and non-reflecting boundary conditions in SPH, Int J Numer Methods Fluids, 61, 7, 709-724, (2009) · Zbl 1421.76182
[34] Leroy, A.; Violeau, D.; Ferrand, M.; Kassiotis, C., Unified semi-analytical wall boundary conditions applied to 2-d incompressible SPH, J Comput Phys, 261, 106-129, (2014) · Zbl 1349.76706
[35] Libersky, L.; Petschek, A.; Carney, T.; Hipp, J.; Allahdadi, F., High strain lagrangian hydrodynamics:: a three-dimensional SPH code for dynamic material response, J Comput Phys, 109, 1, 67-75, (1993) · Zbl 0791.76065
[36] Lizarraga-García, E., A study of taylor bubbles in vertical and inclined slug flow using multiphase cfd with level set. Ph.D. Thesis, (2016), Massachusetts Institute of Technology
[37] Lockhart, R. W.; Martinelli, R. C., Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem Eng Prog, 45, 1, 39-48, (1949)
[38] Lu, M., Experimental and computational study of two-phase slug flow. Ph.D. Thesis, (2015), Imperial College London
[39] Minier J.-P. Simulation of two-phase flow patterns with a new approach based on smoothed particle hydrodynamics; 2016. NUGENIA Project SPH-2PHASEFLOW Presentation Slides.; Minier J.-P. Simulation of two-phase flow patterns with a new approach based on smoothed particle hydrodynamics; 2016. NUGENIA Project SPH-2PHASEFLOW Presentation Slides.
[40] Mokos, A.; Rogers, B. D.; Stansby, P. K., A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles, Journal of Hydraulic Research, 55, 2, 143-162, (2016)
[41] Monaghan, J., Smoothed particle hydrodynamics, Annu, Rev, Astron Astrophys, 30, 543-574, (1992)
[42] Monaghan, J., A turbulence model for smoothed particle hydrodynamics, Eur J Mech B Fluids, 30, 4, 360-370, (2011) · Zbl 1258.76124
[43] Monaghan, J. J., Smoothed particle hydrodynamics, Rep Prog Phys, 68, 8, 1703, (2005) · Zbl 1160.76399
[44] Morris, J.; Fox, P.; Zhu, Y., Modeling low reynolds number incompressible flows using SPH, J Comput Phys, 136, 1, 214-226, (1997) · Zbl 0889.76066
[45] Morris, J. P., Simulating surface tension with smoothed particle hydrodynamics, Int J Numer Methods Fluids, 33, 3, 333-353, (2000) · Zbl 0985.76072
[46] Müller-Steinhagen, H.; Heck, K., A simple friction pressure drop correlation for two-phase flow in pipes, Chem Eng Process, 20, 6, 297-308, (1986)
[47] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., Two-dimensional sph simulations of wedge water entries, J Comput Phys, 213, 2, 803-822, (2006) · Zbl 1088.76056
[48] Pedersen, S.; Durdevic, P.; Yang, Z., Challenges in slug modeling and control for offshore oil and gas productions: a review study, Int J Multiphase Flow, 88, 270-284, (2017)
[49] Rogers, B. D.; Dalrymple, R. A., SPH modeling of tsunami waves, Advances in coastal and ocean engineering, 75-100, (2008), World Scientific
[50] Sánchez-Silva, F.; Carvajal-Mariscal, I.; Toledo-Velázquez, M.; Libreros, D.; Toledo-Velázquez, M.; Saidani-Scott, H., Experiments in a combined up stream downstream slug flow, EPJ Web of Conf, 45, 01082, (2013)
[51] Sarica, C.; Shoham, O., A simplified transient model for pipeline-riser systems, Chem Eng Sci, 46, 9, 2167-2179, (1991)
[52] Sausen, A.; Sausen, P.; de, M., The slug flow problem in oil industry and pi level control, New technologies in the oil and gas industry, (2012), InTech
[53] Shao, S.; Gotoh, H., Turbulence particle models for tracking free surfaces, J Hydraul Res, 43, 3, 276-289, (2005)
[54] Spedding, P.; Benard, E.; Donnelly, G., Prediction of pressure drop in multiphase horizontal pipe flow, Int Commun Heat Mass Transfer, 33, 9, 1053-1062, (2006)
[55] Szewc, K., Développement d’une approche particulaire de type sph pour la modélisation des écoulements multiphasiques avec interfaces variables. Ph.D. thesis, (2013), Université de Lorraine
[56] Szewc K., Lewandowski M.T. Further investigation of the spurious interface fragmentation in multiphase smoothed particle hydrodynamics. 2016. arXiv:1602.07913; Szewc K., Lewandowski M.T. Further investigation of the spurious interface fragmentation in multiphase smoothed particle hydrodynamics. 2016. arXiv:1602.07913
[57] Szewc K., Walczewska-Szewc K., Olejnik M.. Is the motion of a single sph particle droplet/solid physically correct?2016. arXiv:1602.07902; Szewc K., Walczewska-Szewc K., Olejnik M.. Is the motion of a single sph particle droplet/solid physically correct?2016. arXiv:1602.07902
[58] Tafuni, A.; Domínguez, J.; Vacondio, R.; Crespo, A., A versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics gpu models, Comput Methods Appl Mech Eng, (2018)
[59] Taha, T.; Cui, Z., Hydrodynamics of slug flow inside capillaries, Chem Eng Sci, 59, 6, 1181-1190, (2004)
[60] Taitel, Y.; Bornea, D.; Dukler, A. E., Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AlChE J, 26, 3, 345-354, (1980)
[61] Taitel, Y.; Dukler, A. E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J, 22, 1, 47-55, (1976)
[62] Tartakovsky, A. M.; Panchenko, A., Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics, J Comput Phys, 305, 1119-1146, (2016) · Zbl 1349.76739
[63] Tartakovsky, A. M.; Trask, N.; Pan, K.; Jones, B.; Pan, W.; Williams, J. R., Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media, Comput Geosci, 1-28, (2015)
[64] Tofighi, N.; Yildiz, M., Numerical simulation of single droplet dynamics in three-phase flows using isph, Comput Math Appl, 66, 4, 525-536, (2013) · Zbl 1360.76216
[65] Triplett, K.; Ghiaasiaan, S.; Abdel-Khalik, S.; Sadowski, D., Gas-liquid two-phase flow in microchannels part i: two-phase flow patterns, Int J Multiphase Flow, 25, 3, 377-394, (1999) · Zbl 1137.76763
[66] Viggiani, M.; Mariani, O.; Battarra, V.; Annunziato, A.; Bollettini, U., A model to verify the onset of severe slugging, PSIG annual meeting, (1988), Pipeline Simulation Interest Group: Pipeline Simulation Interest Group Toronto, Ontario
[67] Violeau, D.; Issa, R., Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview, Int J Numer Methods Fluids, 53, 2, 277-304, (2006) · Zbl 1227.76022
[68] Violeau, D.; Leroy, A., On the maximum time step in weakly compressible SPH, J Comput Phys, 256, 388-415, (2014) · Zbl 1349.76745
[69] Wambsganss, M.; Jendrzejczyk, J.; France, D., Two-phase flow and pressure drop in flow passages of compact heat exchangers, Tech. Rep., (1992), Argonne National Lab., IL (United States)
[70] Wang, Z.-B.; Chen, R.; Wang, H.; Liao, Q.; Zhu, X.; Li, S.-Z., An overview of smoothed particle hydrodynamics for simulating multiphase flow, Appl Math Model, 40, 23-24, 9625-9655, (2016)
[71] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv Comput Math, 4, 1, 389-396, (1995) · Zbl 0838.41014
[72] Xie, F.; Zheng, X.; Triantafyllou, M. S.; Constantinides, Y.; Zheng, Y.; Em Karniadakis, G., Direct numerical simulations of two-phase flow in an inclined pipe, J Fluid Mech, 825, 189-207, (2017)
[73] Yao, C.; Liu, Y.; Xu, C.; Zhao, S.; Chen, G., Formation of liquid-liquid slug flow in a microfluidic t-junction: effects of fluid properties and leakage flow, AIChE J, 64, 1, 346-357, (2017)
[74] Yildiz, M.; Rook, R. A.; Suleman, A., SPH with the multiple boundary tangent method, Int J Numer Methods Eng, 77, 10, 1416-1438, (2009) · Zbl 1156.76427
[75] Yu, Z.; Hemminger, O.; Fan, L.-S., Experiment and lattice boltzmann simulation of two-phase gas-liquid flows in microchannels, Chem Eng Sci, 62, 24, 7172-7183, (2007)
[76] Zainali, A.; Tofighi, N.; Shadloo, M.; Yildiz, M., Numerical investigation of newtonian and non-newtonian multiphase flows using isph method, Comput Methods Appl Mech Eng, 254, 99-113, (2013) · Zbl 1297.76137
[77] Zhang, M.; ming Pan, L.; Ju, P.; Yang, X.; Ishii, M., The mechanism of bubbly to slug flow regime transition in air-water two phase flow: a new transition criterion, Int J Heat Mass Transf, 108, 1579-1590, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.